Cell image instance segmentation based on PolarMask using weak labels

分割 人工智能 计算机科学 计算机视觉 尺度空间分割 图像分割 模式识别(心理学) 平滑的 血细胞 医学 免疫学
作者
Binbin Tong,Tingxi Wen,Yu Du,Tongyan Pan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107426-107426 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107426
摘要

A PolarMask-based method for blood cell contour segmentation is proposed. The method is divided into two parts. One part is a weak label-based model pretraining method, which uses weak labels to train the model and obtain a pretraining weight. The training speed and accuracy of the segmentation model are accelerated. The other part is based on the PolarMask method to segment the white and red blood cells in blood cells and can obtain smoother cell contours. Thus, it improves the accuracy of blood cell segmentation. Our method can help medical personnel identify the number of cells and cell shape quickly, which reduces the workload for medical personnel. We improve PolarMask to make it more suitable for blood cell contour segmentation, and the improved method can be divided into two parts. In the first part, we use a weakly labeled dataset with the labeling type of bounding boxes for pretraining and then use the labels of the segmentation type for transfer learning of the cell segmentation model. In the second part, we add a smoothing constraint loss to the loss function of the mask to smoothen the segmented cell contours. We add the SE attention mechanism in the backbone network (ResNet18) to further improve the segmentation accuracy. Our method is mainly used for the segmentation of blood cell (erythrocyte and leukocyte) contours. Our method improves average precision (AP) by 8.4% and AP50 by 0.6% compared with PolarMask. The most significant improvement is in AP75, which improves by 8.8%. Our method models blood cell contours based on PolarMask and uses a weakly labeled training model to obtain pretrained weights that can segment red and white blood cells. Our method effectively improves the accuracy of the model in segmenting blood cells, and the segmented blood cell contours are smoother.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俏皮书双给俏皮书双的求助进行了留言
1秒前
冰魂应助落寞代桃采纳,获得10
5秒前
852应助力量采纳,获得10
6秒前
6秒前
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
青堤发布了新的文献求助10
11秒前
深情安青应助刻苦的元灵采纳,获得10
13秒前
kirin发布了新的文献求助10
15秒前
splemeth完成签到,获得积分10
15秒前
17秒前
zws完成签到,获得积分10
21秒前
雁归有时发布了新的文献求助40
22秒前
zws发布了新的文献求助10
24秒前
24秒前
24秒前
朱文韬发布了新的文献求助10
24秒前
方方关注了科研通微信公众号
27秒前
冬天完成签到 ,获得积分10
27秒前
28秒前
29秒前
MRM发布了新的文献求助10
31秒前
脑洞疼应助呆萌的u采纳,获得10
31秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
兰瓜瓜完成签到,获得积分10
35秒前
35秒前
36秒前
Bing发布了新的文献求助10
37秒前
39秒前
waytrue发布了新的文献求助10
39秒前
哈哈哈哈发布了新的文献求助10
44秒前
魏1122完成签到,获得积分10
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867198
求助须知:如何正确求助?哪些是违规求助? 3409455
关于积分的说明 10663716
捐赠科研通 3133646
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832966
科研通“疑难数据库(出版商)”最低求助积分说明 780510