Data-driven approach to develop prediction model for outdoor thermal comfort using optimized tree-type algorithms

热舒适性 预测建模 计算机科学 机器学习 树(集合论) 选择(遗传算法) 空调 数据挖掘 工程类 人工智能 模拟 数学 机械工程 热力学 物理 数学分析
作者
Jaemin Jeong,Jaewook Jeong,Minsu Lee,Jaehyun Lee,Soowon Chang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:226: 109663-109663 被引量:15
标识
DOI:10.1016/j.buildenv.2022.109663
摘要

Thermal comfort can affect the productivity, health, and satisfaction of people. Although indoor thermal comfort can be controlled using heating, ventilation, and air conditioning, this is difficult for outdoor thermal comfort. Therefore, it is important for evaluating outdoor thermal comfort to manage the health and productivity of people for a specific industry, such as construction. However, conventional simulations are very difficult to conduct by non-experts. Moreover, in previous studies, simplified models have low prediction accuracy. To solve these issues, this study develops a user-friendly data-driven prediction model that maximizes prediction accuracy using an optimized tree-based machine learning algorithm. This data-driven prediction model construction for outdoor thermal comfort using machine learning is made up of three steps: (i) establishment of a database, (ii) selection of variables, and (iii) selection of prediction model. This study considers three scenarios to maximize the prediction accuracy. The results reveal that the highest prediction accuracy (95.21%) is achieved using the XGBoost algorithm. Moreover, five-fold cross-validation is conducted to validate the prediction model. It shows that the developed prediction model can accurately predict outdoor thermal comfort. Additionally, non-experts can collect input data from a public institution or a sensor and easily utilize the prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lq应助meng采纳,获得10
1秒前
DDDD应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
吹风机完成签到,获得积分20
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
快乐肥宅应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得50
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
ShawnLyu应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
兴奋白枫发布了新的文献求助10
4秒前
4秒前
4秒前
乐乐应助慢慢采纳,获得10
5秒前
孔觅儿发布了新的文献求助10
6秒前
海晨完成签到,获得积分10
6秒前
7秒前
Levon应助樊樊樊梵情采纳,获得20
7秒前
Li应助95采纳,获得10
8秒前
CodeCraft应助羊羊羊采纳,获得10
8秒前
三七发布了新的文献求助10
9秒前
9秒前
阿龙啊完成签到 ,获得积分10
9秒前
zeng完成签到,获得积分10
10秒前
10秒前
江户川路飞完成签到,获得积分10
11秒前
Chao123_完成签到,获得积分10
11秒前
12秒前
13秒前
如来完成签到,获得积分10
13秒前
微笑的涛发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606