内窥镜
光纤
光学
计算机科学
材料科学
物理
医学
外科
作者
Gregory Baethge,Csilla Timar-Fulep,Stefan Thoene,Shin-Sung Kim,Flurin Herren,Charly Meyer
摘要
Endoscopes are medical inspection devices allowing doctors to examine internal organs without the need for large incisions. Made of optical fibers and an imaging lens at the tip, one of their most critical parameters is the size of the imaging optical system, limiting the agility and accessibility for clinical applications. Metalens-based fiber-optic endoscopes offer a promising alternative to conventional devices to reduce the size while maintaining the image quality. However, the accurate modelling and analysis required to design these devices can be challenging as they combine nanoscopic elements in a macroscopic optical system. In this work, we present a new multiscale metalens design solution for fiber-optic endoscopes, utilizing full-wave electromagnetic simulations and ray-tracing techniques. The metalens consists of subwavelength scatterers (meta-atoms) characterized individually using Rigorous Coupling Wave Analysis (RCWA). By controlling their distribution in size according to a target phase profile optimized in ray-tracing optics software, one can manipulate the phase, amplitude and polarization of the transmitted light. Smaller scale metalens (~100λ),can be directly simulated and their near-/far-field results can be obtained with the Finite Difference Time Domain (FDTD) method. For larger metalens (≫ 100 λ) stitching the near field or summing up the farfield from individual metaatoms to obtain the overall response of the metalens is more efficient than the direct simulationFinally, we can perform ray-tracing simulations to characterize the full system in a macro-scale environment, utilizing the response of the metalens.
科研通智能强力驱动
Strongly Powered by AbleSci AI