Long-term Prediction Method for PM2.5 Concentration Using Edge Channel Graph Attention Network and Gating Closed-form Continuous-time Neural Networks

期限(时间) 门控 频道(广播) 计算机科学 GSM演进的增强数据速率 人工神经网络 图形 人工智能 模式识别(心理学) 生物系统 理论计算机科学 计算机网络 心理学 物理 神经科学 生物 量子力学
作者
Chen Zhang,Xiaofan Li,Hongyang Sheng,Ya Peng Shen,Wei Xie,Xuhui Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:189: 356-373 被引量:2
标识
DOI:10.1016/j.psep.2024.06.090
摘要

Fine particulate matter such as PM2.5 threatens significantly to the environment and human health, so it is essential to design a reliable long-term prediction method for PM2.5 concentrations. Existing long-term PM2.5 prediction models inadequately utilize urban spatial features, fail to consider the role of meteorological factors in PM2.5 levels, and overlook the interaction between PM2.5 concentrations in different cities. To tackle this issue, we propose two new models and integrate them. Firstly, we develop a spatial feature model (ECGAT) for extracting PM2.5 concentration among regions based on Graph Neural Networks (GNN), edge-channel mechanisms, and Graph Attention Convolution (GATConv). This model utilizes GNN to extract urban adjacency relationships and meteorological features, employs edge-channel mechanisms to recalculate weights for interactions between cities, and outputs spatial correlations through GATConv. Secondly, we propose Gating Closed-form Continuous-time Neural Networks (GCFC) as a temporal model to extract the PM2.5 concentration's temporal features. The fusion of these two models, named ECGAT-GCFC (EGCFC), enhances the model's capability to capture spatiotemporal features and improves performance in PM2.5 long-term predictions. Results from real-world data analysis show that the proposed algorithm outperforms state-of-the-art existing prediction models in predicting PM2.5 levels over long durations. Compared to baseline models, EGCFC reduces RMSE by an average of 3.39%, decreases MAE by 4.83%, increases R2 by 4.89%, CSI by 3.13%, and lowers FAR by 11.39%. These indicate that EGCFC is an effective method for predicting trends in urban PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挚zhi发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
天天快乐应助SSQY采纳,获得10
刚刚
赵哈哈找文献完成签到,获得积分10
刚刚
曾绍炜发布了新的文献求助10
1秒前
JamesTYD发布了新的文献求助10
1秒前
赵雷发布了新的文献求助10
1秒前
馒头发布了新的文献求助30
2秒前
2秒前
Akim应助yyy采纳,获得10
2秒前
凉月发布了新的文献求助10
3秒前
我不会拉杆完成签到,获得积分10
3秒前
hanshuo4400发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
祝愿发布了新的文献求助10
4秒前
5秒前
5秒前
文静的峻熙完成签到,获得积分10
6秒前
小蘑菇应助叮咚鸡采纳,获得10
6秒前
医文轩完成签到,获得积分10
6秒前
顾矜应助90采纳,获得10
7秒前
weiwei发布了新的文献求助10
7秒前
跳跃的聪展完成签到,获得积分20
7秒前
rerwre完成签到,获得积分10
7秒前
天天快乐应助ff采纳,获得10
8秒前
8秒前
8秒前
科研助手6给Swilder的求助进行了留言
8秒前
qwert完成签到,获得积分10
9秒前
长庚完成签到,获得积分10
9秒前
9秒前
Zhao_Kai完成签到,获得积分10
9秒前
大个应助纯情的寻绿采纳,获得10
9秒前
zxcv23发布了新的文献求助10
9秒前
kyfw完成签到 ,获得积分10
10秒前
脱氧糖苷发布了新的文献求助10
10秒前
10秒前
可乐666完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789084
求助须知:如何正确求助?哪些是违规求助? 3334196
关于积分的说明 10267701
捐赠科研通 3050439
什么是DOI,文献DOI怎么找? 1674012
邀请新用户注册赠送积分活动 802396
科研通“疑难数据库(出版商)”最低求助积分说明 760570