已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 癌症 计算机科学
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:6
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒窈完成签到 ,获得积分10
3秒前
5秒前
11秒前
小蚊子发布了新的文献求助10
12秒前
dreamboat完成签到,获得积分10
14秒前
彭于晏应助KonanoDade采纳,获得10
15秒前
公交卡发布了新的文献求助10
16秒前
16秒前
科研通AI5应助嘉言懿行采纳,获得10
18秒前
开朗含海发布了新的文献求助10
20秒前
852应助Wsh采纳,获得30
22秒前
23秒前
CHINA_C13完成签到,获得积分20
27秒前
科研通AI5应助公交卡采纳,获得10
28秒前
兴奋采梦发布了新的文献求助10
29秒前
霜降完成签到 ,获得积分10
32秒前
如意的耳机完成签到 ,获得积分10
33秒前
瘦瘦牛排完成签到 ,获得积分10
34秒前
公交卡完成签到,获得积分10
39秒前
momosci完成签到,获得积分10
45秒前
小乖完成签到 ,获得积分10
46秒前
Sam完成签到,获得积分10
47秒前
FashionBoy应助海孩子采纳,获得10
54秒前
55秒前
奶油泡fu完成签到 ,获得积分10
58秒前
1分钟前
cnd发布了新的文献求助10
1分钟前
1分钟前
开心果发布了新的文献求助10
1分钟前
李孟佯完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助zm采纳,获得10
1分钟前
acihk发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助开心果采纳,获得10
1分钟前
Wsh发布了新的文献求助30
1分钟前
ccalvintan发布了新的文献求助10
1分钟前
1分钟前
东邪西毒加任我行完成签到,获得积分10
1分钟前
cnd完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212146
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201