PSAEEGNet: pyramid squeeze attention mechanism-based CNN for single-trial EEG classification in RSVP task

计算机科学 脑电图 可视化快速呈现 模式识别(心理学) 人工智能 卷积神经网络 任务(项目管理) 语音识别 认知 心理学 神经科学 管理 经济
作者
Zijian Yuan,Qian Zhou,Baozeng Wang,Qi Zhang,Yang Yang,Yuwei Zhao,Yong Guo,Jin Zhou,Changyong Wang
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media]
卷期号:18 被引量:2
标识
DOI:10.3389/fnhum.2024.1385360
摘要

Introduction Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Methods Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Results Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 ( p < 0.05). Discussion These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小毛线完成签到,获得积分10
1秒前
1秒前
Ricky发布了新的文献求助10
2秒前
铭心发布了新的文献求助10
3秒前
李雨珍完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
7秒前
汽水味发布了新的文献求助10
8秒前
Aaron发布了新的文献求助10
8秒前
陈陈发布了新的文献求助10
10秒前
11秒前
轩轩发布了新的文献求助10
11秒前
liden发布了新的文献求助10
14秒前
NexusExplorer应助轩轩采纳,获得10
15秒前
SCIfafafafa发布了新的文献求助10
16秒前
桐桐应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
地表飞猪应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
19秒前
helitrope完成签到,获得积分10
19秒前
搞笑5次完成签到,获得积分10
20秒前
20秒前
dreamer完成签到 ,获得积分10
20秒前
英俊的铭应助SCIfafafafa采纳,获得10
21秒前
lifan完成签到,获得积分10
21秒前
MaRin发布了新的文献求助10
22秒前
23秒前
嘉梦完成签到,获得积分10
24秒前
池棠小荷完成签到,获得积分10
24秒前
怡然诗霜完成签到,获得积分10
25秒前
Lili完成签到,获得积分10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450