材料科学
凝聚态物理
电荷密度波
退火(玻璃)
物理
复合材料
超导电性
作者
Xueliang Wu,Xinrun Mi,Long Zhang,Chin-Wei Wang,Nour Maraytta,Xiaoyuan Zhou,Mingquan He,Michael Merz,Yisheng Chai,Aifeng Wang
标识
DOI:10.1103/physrevlett.132.256501
摘要
The unprecedented phenomenon that a charge density wave (CDW) emerges inside the antiferromagnetic (AFM) phase indicates an unusual CDW mechanism associated with magnetism in FeGe. Here, we demonstrate that both the CDW and magnetism of FeGe can be effectively tuned through postgrowth annealing treatments. Instead of the short-range CDW reported earlier, a long-range CDW order is realized below 110 K in single crystals annealed at $320\text{ }\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ for over 48 h. The CDW and AFM transition temperatures appear to be inversely correlated with each other. The onset of the CDW phase significantly reduces the critical field of the spin-flop transition, whereas the CDW transition remains stable against minor variations in magnetic orders such as annealing-induced magnetic clusters and spin-canting transitions. Single-crystal x-ray diffraction measurements reveal substantial disorder on the Ge1 site, which is characterized by displacement of the Ge1 atom from the ${\mathrm{Fe}}_{3}\mathrm{Ge}$ layer along the $c$ axis and can be reversibly modified by the annealing process. The observed annealing-tunable CDW and magnetic orders can be well understood in terms of disorder on the Ge1 site. Our study provides a vital starting point for the exploration of the unconventional CDW mechanism in FeGe and of kagome materials in general.
科研通智能强力驱动
Strongly Powered by AbleSci AI