Understanding the Disparities of PM2.5 Air Pollution in Urban Areas via Deep Support Vector Regression

溢出效应 空气质量指数 持续性 公制(单位) 计算机科学 网格 空气污染 图形 支持向量机 节点(物理) 计量经济学 环境科学 机器学习 地理 数学 业务 工程类 理论计算机科学 气象学 经济 生态学 生物 化学 大地测量学 有机化学 营销 结构工程 微观经济学
作者
Yuling Xia,Teague McCracken,Tong Liu,Pei Chen,A. R. Metcalf,Chao Fan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (19): 8404-8416 被引量:1
标识
DOI:10.1021/acs.est.3c09177
摘要

In densely populated urban areas, PM2.5 has a direct impact on the health and quality of residents' life. Thus, understanding the disparities of PM2.5 is crucial for ensuring urban sustainability and public health. Traditional prediction models often overlook the spillover effects within urban areas and the complexity of the data, leading to inaccurate spatial predictions of PM2.5. We propose Deep Support Vector Regression (DSVR) that models the urban areas as a graph, with grid center points as the nodes and the connections between grids as the edges. Nature and human activity features of each grid are initialized as the representation of each node. Based on the graph, DSVR uses random diffusion-based deep learning to quantify the spillover effects of PM2.5. It leverages random walk to uncover more extensive spillover relationships between nodes, thereby capturing both the local and nonlocal spillover effects of PM2.5. And then it engages in predictive learning using the feature vectors that encapsulate spillover effects, enhancing the understanding of PM2.5 disparities and connections across different regions. By applying our proposed model in the northern region of New York for predictive performance analysis, we found that DSVR consistently outperforms other models. During periods of PM2.5 surges, the R-square of DSVR reaches as high as 0.729, outperforming non-spillover models by 2.5 to 5.7 times and traditional spatial metric models by 2.2 to 4.6 times. Therefore, our proposed model holds significant importance for understanding disparities of PM2.5 air pollution in urban areas, taking the first steps toward a new method that considers both the spillover effects and nonlinear feature of data for prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助清新的宛筠采纳,获得10
1秒前
云yun完成签到,获得积分10
1秒前
1秒前
BWZ发布了新的文献求助10
2秒前
高越发布了新的文献求助10
2秒前
大大大大宝凌完成签到,获得积分10
2秒前
烟花应助有一套采纳,获得10
3秒前
4秒前
冰魂应助难过大神采纳,获得10
4秒前
李新阳完成签到,获得积分10
4秒前
4秒前
云yun发布了新的文献求助30
5秒前
6秒前
6秒前
7秒前
wanghao发布了新的文献求助10
8秒前
8秒前
wenli完成签到,获得积分10
8秒前
zzzzz完成签到,获得积分10
9秒前
NexusExplorer应助高越采纳,获得10
9秒前
爆米花应助高越采纳,获得100
10秒前
科研通AI2S应助高越采纳,获得10
10秒前
Orange应助高越采纳,获得10
10秒前
大模型应助高越采纳,获得10
10秒前
充电宝应助高越采纳,获得10
10秒前
共享精神应助高越采纳,获得100
10秒前
10秒前
灵巧谷波发布了新的文献求助10
10秒前
阳光沛凝完成签到,获得积分10
10秒前
10秒前
壮观以松发布了新的文献求助10
11秒前
温暖的思柔完成签到,获得积分10
12秒前
CipherSage应助刘珍荣采纳,获得10
12秒前
12秒前
dyz完成签到,获得积分20
13秒前
ShellyHan发布了新的文献求助10
13秒前
CG2021发布了新的文献求助10
14秒前
Angie发布了新的文献求助10
15秒前
流浪的鲨鱼完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171