材料科学
金属锂
电解质
锂(药物)
聚合物
酮
金属
方向(向量空间)
液晶
聚合物电解质
化学工程
固态
无机化学
有机化学
电极
光电子学
复合材料
物理化学
离子电导率
冶金
医学
化学
几何学
数学
工程类
内分泌学
作者
Yuchen Jiang,Lu Liu,Yu Liu,Jiazhu Guan,Honghao Wang,Meng Zhang,Lin Chen,Yong Cao,Rongzheng Li,Yajuan Zhou,Qinghui Zeng,Zhenfeng Li,Wenping Liu,Xiaoyi Li,Liaoyun Zhang
标识
DOI:10.1002/adfm.202502613
摘要
Abstract Low room temperature ionic conductivity and interfacial incompatibility severely hinder the further application of polymer electrolytes in lithium metal batteries. Here, a novel shear‐oriented (SO) aliphatic ketone‐carbonyl‐based liquid crystal composite solid polymer electrolyte (FL 7 M 3 @CSPE SO ) is prepared by in situ thermal‐polymerization of liquid crystal monomer (FPZ‐LC, FL) and N, N' ‐Methylenebisacrylamide (MBA, M) on cellulose nanofiber (CNF) in the presence of triethylene‐glycol‐dimethyl‐ether (G 3 ) and lithium salt (lithium bis(trifluoromethanesulphonyl)imide, LiTFSI). The high polarity of keto‐carbonyl groups improves the dissociation ability of lithium salt. The highly oriented liquid crystals provide rapid ion transport channels. Thus, the FL 7 M 3 @CSPE SO achieves ionic conductivity of 10 −4 S cm −1 and a lithium‐ion transference number (t Li+ ) of 0.52 at 30 °C. Besides, in situ formed stable interface layer effectively inhibits the growth of lithium dendrites. The assembled Li/FL 7 M 3 @CSPE SO /Li cells operate stably over 5500 h at 0.05 mA cm −2 (30 °C). Impressively, the assembled Li/FL 7 M 3 @CSPE SO /NCM811 cells exhibits a long‐term cycle over 1200 h with a capacity retention of 92% under 0.05 C and 4.4 V (−5 °C). This work not only highlights the advantages of the aliphatic keto‐carbonyl groups and highly oriented liquid crystal in improving ion transport capacity, but also provides a design strategy for advanced polymer electrolytes suitable for lower temperature and high‐voltage solid‐state lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI