Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation

人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 模式识别(心理学) 相关性 尺度空间分割 图像(数学) 数学 几何学
作者
Quan Zhou,Mingwei Wen,Mingyue Ding,Yixin Su,Zhiwei Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/jbhi.2025.3559091
摘要

Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵活的胖子wxp完成签到,获得积分10
刚刚
JIANG发布了新的文献求助10
刚刚
言小完成签到,获得积分10
刚刚
2秒前
想逃离发布了新的文献求助10
2秒前
xiaocui完成签到,获得积分10
3秒前
4秒前
香雪若梅发布了新的文献求助10
4秒前
ccy完成签到,获得积分10
5秒前
5秒前
尹晓蓝发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
xyz完成签到,获得积分10
7秒前
7秒前
ddjjhh发布了新的文献求助10
9秒前
失眠烨华发布了新的文献求助10
10秒前
10秒前
浮游应助秋山落叶采纳,获得10
10秒前
11秒前
111发布了新的文献求助10
11秒前
123321发布了新的文献求助10
13秒前
13秒前
13秒前
陈琳发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
顾矜应助堕落的大金毛采纳,获得10
16秒前
李梦华完成签到,获得积分10
17秒前
17秒前
希望天下0贩的0应助夹心采纳,获得10
18秒前
Momo007完成签到,获得积分10
18秒前
曾经的溪流关注了科研通微信公众号
19秒前
朱瑶君完成签到,获得积分10
19秒前
19秒前
好运丫丫耶完成签到,获得积分10
19秒前
漫漫发布了新的文献求助10
20秒前
顾矜应助尹晓蓝采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4563889
求助须知:如何正确求助?哪些是违规求助? 3988219
关于积分的说明 12349296
捐赠科研通 3659250
什么是DOI,文献DOI怎么找? 2016426
邀请新用户注册赠送积分活动 1050821
科研通“疑难数据库(出版商)”最低求助积分说明 938776