Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation

人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 模式识别(心理学) 相关性 尺度空间分割 图像(数学) 数学 几何学
作者
Quan Zhou,Mingwei Wen,Mingyue Ding,Yixin Su,Zhiwei Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/jbhi.2025.3559091
摘要

Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sinba完成签到,获得积分10
2秒前
小何医生发布了新的文献求助30
2秒前
4秒前
Hello应助黄垚采纳,获得10
5秒前
田様应助傲娇女酒鬼采纳,获得10
6秒前
hd完成签到,获得积分10
6秒前
机灵柚子应助无限大门采纳,获得20
7秒前
7秒前
徐木木完成签到,获得积分10
7秒前
7秒前
亚米完成签到,获得积分10
8秒前
pluto应助xxx采纳,获得10
9秒前
9秒前
宋芽芽u完成签到 ,获得积分10
9秒前
lambda完成签到,获得积分10
9秒前
11秒前
英俊的铭应助pollen06采纳,获得10
12秒前
12秒前
fff应助Bo采纳,获得10
12秒前
无花果应助温柔凝莲采纳,获得10
12秒前
lihuiying5aini完成签到,获得积分10
13秒前
一一发布了新的文献求助50
13秒前
14秒前
江河湖海完成签到,获得积分10
14秒前
山月完成签到 ,获得积分10
15秒前
十三艘船发布了新的文献求助10
15秒前
15秒前
Nancy完成签到,获得积分20
16秒前
chaser完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
八分饱应助爱笑小笼包采纳,获得10
19秒前
Tsui应助爱笑小笼包采纳,获得10
20秒前
20秒前
Bo完成签到,获得积分20
20秒前
七个丸子完成签到,获得积分10
20秒前
奋进的熊完成签到,获得积分10
20秒前
tuanheqi应助石雅霜采纳,获得50
20秒前
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097634
求助须知:如何正确求助?哪些是违规求助? 3635290
关于积分的说明 11523094
捐赠科研通 3345616
什么是DOI,文献DOI怎么找? 1838815
邀请新用户注册赠送积分活动 906265
科研通“疑难数据库(出版商)”最低求助积分说明 823527