Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation

人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 模式识别(心理学) 相关性 尺度空间分割 图像(数学) 数学 几何学
作者
Quan Zhou,Mingwei Wen,Mingyue Ding,Yixin Su,Zhiwei Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/jbhi.2025.3559091
摘要

Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助陈文学采纳,获得10
2秒前
纷雪完成签到,获得积分10
2秒前
2秒前
天天快乐应助暮光之城采纳,获得10
3秒前
123发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
科研小白发布了新的文献求助10
4秒前
4秒前
哈哈完成签到,获得积分10
4秒前
4秒前
5秒前
李健应助zxy采纳,获得10
5秒前
6秒前
6秒前
6秒前
小二郎应助Jenny采纳,获得30
7秒前
7秒前
7秒前
不倦发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
frankk完成签到,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
mrdiver发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656374
求助须知:如何正确求助?哪些是违规求助? 4803112
关于积分的说明 15075686
捐赠科研通 4814650
什么是DOI,文献DOI怎么找? 2575863
邀请新用户注册赠送积分活动 1531210
关于科研通互助平台的介绍 1489805