Artificial Intelligence in Central-Peripheral Interaction Organ Crosstalk: The Future of Drug Discovery and Clinical Trials

药物发现 串扰 临床试验 外围设备 医学 药品 计算生物学 药理学 生物信息学 内科学 生物 工程类 电子工程
作者
Yufeng Chen,Mingrui Yang,Qian Hua
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:: 107734-107734
标识
DOI:10.1016/j.phrs.2025.107734
摘要

Drug discovery before the 20th century often focused on single genes, molecules, cells, or organs, failing to capture the complexity of biological systems. The emergence of protein-protein interaction network studies in 2001 marked a turning point and promoted a holistic approach that considers the human body as an interconnected system. This is particularly evident in the study of bidirectional interactions between the central nervous system (CNS) and peripheral organs, which are critical for understanding health and disease. Understanding these complex interactions requires integrating multi-scale, heterogeneous data from molecular to organ levels, encompassing both omics (e.g., genomics, proteomics, microbiomics) and non-omics data (e.g., imaging, clinical phenotypes). Artificial intelligence (AI), particularly multi-modal models, has demonstrated significant potential in analyzing CNS-peripheral organ interactions by processing vast, heterogeneous datasets. Specifically, AI facilitates the identification of biomarkers, prediction of therapeutic targets, and simulation of drug effects on multi-organ systems, thereby paving the way for novel therapeutic strategies. This review highlights AI's transformative role in CNS-peripheral interaction research, focusing on its applications in unraveling disease mechanisms, discovering drug targets, and optimizing clinical trials through patient stratification and adaptive trial design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiranli给観月真的求助进行了留言
1秒前
ChenGY完成签到,获得积分10
2秒前
qin发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
李健的粉丝团团长应助ddd采纳,获得10
4秒前
4秒前
科研通AI2S应助zzz采纳,获得10
4秒前
pinging完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Cast_Lappland发布了新的文献求助10
5秒前
ximei发布了新的文献求助20
5秒前
猪猪hero发布了新的文献求助10
5秒前
清涯完成签到 ,获得积分10
6秒前
111完成签到,获得积分20
6秒前
6秒前
zakarya完成签到,获得积分10
7秒前
7秒前
风中的逍遥完成签到,获得积分10
7秒前
jx完成签到,获得积分10
8秒前
站住辣条完成签到,获得积分10
8秒前
英勇靖雁完成签到,获得积分20
9秒前
9秒前
yuki发布了新的文献求助20
9秒前
慈祥的蛋挞完成签到,获得积分10
9秒前
852应助眼睛大白昼采纳,获得10
9秒前
9秒前
9秒前
英俊的铭应助Cast_Lappland采纳,获得10
10秒前
黎小乐子发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
机灵柚子应助玥来玥好采纳,获得10
11秒前
12秒前
不想干活应助888采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4194193
求助须知:如何正确求助?哪些是违规求助? 3729926
关于积分的说明 11747997
捐赠科研通 3405129
什么是DOI,文献DOI怎么找? 1868244
邀请新用户注册赠送积分活动 924424
科研通“疑难数据库(出版商)”最低求助积分说明 835387