For economic and sustainable biomanufacturing, the oleaginous yeast Rhodotorula toruloides has emerged as a promising platform for producing biofuels, pharmaceuticals, and other valuable chemicals. However, genetic manipulation of R. toruloides has been limited by its high GC content and the lack of a replicating plasmid, necessitating gene integration into the genome of the yeast. To address these challenges, we developed the RT-EZ (R. toruloides Efficient Zipper) toolkit, a versatile tool based on Golden Gate assembly, designed to streamline R. toruloides engineering with improved efficiency and flexibility. The RT-EZ toolkit simplifies vector construction by incorporating new features such as bidirectional promoters and 2A peptides, color-based screening using RFP, and sequences optimized for both Agrobacterium tumefaciens-mediated transformation (ATMT) and easy linearization, enabling straightforward selection and transformation. Notably, the RT-EZ kit can be used to construct an expression cassette with four different genes in one assembly reaction, significantly improving vector construction speed and efficiency. The utility of the RT-EZ toolkit was demonstrated through the successful synthesis of arachidonic acid in R. toruloides by coexpressing fatty acid elongases and desaturases. This result underscores the potential of the RT-EZ toolkit to advance synthetic biology in R. toruloides, providing a streamlined method for addressing genetic engineering challenges in the yeast.