已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TransABseq: A Two-Stage Approach for Predicting Antigen–Antibody Binding Affinity Changes upon Mutation Based on Protein Sequences

突变 抗原 抗体 计算生物学 阶段(地层学) 化学 分子生物学 遗传学 生物 基因 古生物学
作者
Cui-Feng Li,Zihao Yan,Fang Ge,Xuan Yu,Jing Zhang,Ming Zhang,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00478
摘要

The antigen-antibody interaction represents a critical mechanism in host defense, contributing to pathogen neutralization, tumor surveillance, immunotherapy, and in vitro disease detection. Owing to their exceptional specificity, affinity, and selectivity, antibodies have been extensively utilized in the development of clinical diagnostic, therapeutic, and prophylactic strategies. In this study, we propose TransABseq, a novel computational framework specifically designed to predict the effects of missense mutations on antigen-antibody interactions. The model's innovative two-stage architecture enables comprehensive feature analysis: in the first stage, multiple embeddings of protein language models are processed through a Transformer encoder module and a multiscale convolutional module; in the second stage, the XGBOOST model is used to perform quantitative output based on the deeply fused features. A critical advancement contributing to the effectiveness of TransABseq is the deep feature fusion strategy, which reveals the biochemical properties of proteins. By leveraging the multilayer self-attention mechanism of the Transformer to capture complex global dependencies within sequences and mining features at different hierarchical levels through multiscale convolution, the feature abstraction capability of TransABseq is significantly enhanced. We evaluated TransABseq through three distinct cross-validation strategies on two established benchmarks and a newly reconstructed data set. As a result, TransABseq achieved average PCC values of 0.607, 0.843, and 0.794 and average RMSE values of 1.166, 1.314, and 1.337 kcal/mol in 10-fold cross-validation. Furthermore, its robustness and predictive accuracy were validated on blind test data sets, where TransABseq outperformed existing methods, enabling it to attain a PCC of 0.721 and an RMSE of 0.925 kcal/mol. The relevant data and code have been made publicly available for academic research at: https://github.com/cuifengLI/TransABseq.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miku应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
3秒前
童话艺术佳完成签到,获得积分10
5秒前
Akim应助Sew东坡采纳,获得10
7秒前
淡淡的诗兰完成签到,获得积分10
8秒前
10秒前
成成成岩浆完成签到 ,获得积分10
10秒前
Owen应助头秃的阿吉采纳,获得10
13秒前
14秒前
SciKid524完成签到 ,获得积分10
14秒前
Tiamo完成签到,获得积分10
15秒前
15秒前
宇宙发布了新的文献求助10
16秒前
Salt1222发布了新的文献求助80
20秒前
Sew东坡发布了新的文献求助10
21秒前
Jenkin完成签到,获得积分10
22秒前
嘻嘻完成签到,获得积分10
25秒前
墨辰完成签到 ,获得积分10
26秒前
wang完成签到,获得积分10
27秒前
打打应助KGYM采纳,获得10
28秒前
28秒前
Lucy完成签到,获得积分10
30秒前
31秒前
mmmmmmgm完成签到 ,获得积分10
33秒前
34秒前
pp‘s完成签到 ,获得积分10
34秒前
iso发布了新的文献求助30
36秒前
神外第一刀完成签到 ,获得积分10
36秒前
fang完成签到,获得积分10
37秒前
不拿拿发布了新的文献求助10
39秒前
39秒前
细腻沅完成签到,获得积分10
43秒前
KGYM发布了新的文献求助10
44秒前
牛牛完成签到 ,获得积分10
46秒前
宇宙完成签到,获得积分20
48秒前
领导范儿应助无语的稀采纳,获得10
49秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819829
求助须知:如何正确求助?哪些是违规求助? 3362733
关于积分的说明 10418535
捐赠科研通 3080999
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494