Lionfish Search Algorithm: A Novel Nature‐Inspired Metaheuristic

计算机科学 元启发式 数学优化 算法 人工智能 数学
作者
Saif Mohanad Kadhim,Johnny Koh Siaw Paw,Chong Tak Yaw,Shahad Thamear Abd Al‐Latief,Ahmed Alkhayyat,Deepak Gupta
出处
期刊:Expert Systems [Wiley]
卷期号:42 (4)
标识
DOI:10.1111/exsy.70016
摘要

ABSTRACT This study introduces an innovative optimization algorithm called Lionfish Search (LFS) technique, which is inspired by the visual predator Lionfish, in which it is specifically imitating their hunting tactics. The suggested algorithm considers several parameters that influence the hunting behaviour of lionfish, such as visual acuity, mobility, striking success, and prey swallowing potential. Furthermore, this study examines the influence of the physiological traits of the lionfish and their relationship with environmental factors. The novel search algorithm has shown enhanced performance and efficiency, particularly in scenarios where the integration of visual cues and intricate hunting strategies is vital. The suggested LFS method was evaluated using 20 well‐known single‐modal and multi‐modal mathematical functions to analyse its different characteristics. The LFS method has shown remarkable efficacy in both exploration and exploitation, effectively reducing the likelihood of being trapped in local optima. Additionally, it has a rapid convergence capacity, particularly in the realm of large‐scale global optimization. Comparisons were made between the LFS algorithm, and 10 other prominent algorithms mentioned in the literature. The proposed LFS metaheuristic algorithm outperformed the others on almost all of the examined functions, demonstrating a statistically significant advantage. Moreover, the positive results found in three practical optimization situations demonstrate the effectiveness of the LFS in accomplishing problem‐solving tasks that have limited and unknown search areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
6秒前
爆米花应助zaqqq采纳,获得10
7秒前
9秒前
uniphoton发布了新的文献求助10
10秒前
SQDHZJ完成签到,获得积分10
12秒前
Yon完成签到 ,获得积分10
14秒前
14秒前
隐形曼青应助iwhsgfes采纳,获得10
14秒前
16秒前
科研通AI2S应助徐佳乐采纳,获得10
18秒前
18秒前
WYN发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
俭朴夜香完成签到,获得积分10
22秒前
23秒前
xms2022发布了新的文献求助10
25秒前
周晏平发布了新的文献求助10
25秒前
Rein发布了新的文献求助10
26秒前
酷波er应助wenfeisun采纳,获得10
26秒前
27秒前
pazuzu发布了新的文献求助10
28秒前
慕青应助狂野的大公猪采纳,获得10
29秒前
29秒前
31秒前
pazuzu完成签到,获得积分20
33秒前
meng发布了新的文献求助10
34秒前
善学以致用应助周晏平采纳,获得30
34秒前
34秒前
徐佳乐发布了新的文献求助10
34秒前
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
HEIKU应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
36秒前
HEIKU应助科研通管家采纳,获得10
36秒前
HEIKU应助科研通管家采纳,获得10
36秒前
HEIKU应助科研通管家采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648