An Integrative Clinical and Intra- and Peritumoral MRI Radiomics Nomogram for the Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer

列线图 无线电技术 淋巴血管侵犯 医学 结直肠癌 放射科 癌症 肿瘤科 内科学 转移
作者
Fengdan Xu,Jian-Wei Hong,Xian-hua Wu
出处
期刊:Academic Radiology [Elsevier BV]
标识
DOI:10.1016/j.acra.2025.02.019
摘要

Accurately and noninvasively predicting lymphovascular invasion (LVI) is critical for the prognosis of patients with rectal cancer (RC). The objective of this study was to create a nomogram model that combines clinical features with MRI-based radiomic characteristics of both intratumoral and peritumoral regions to predict LVI in patients with resectable rectal cancer. This study retrospectively included 149 RC patients diagnosed with LVI, who were randomly assigned to a training cohort (n=104) and a testing cohort (n=45). Radiomics features were derived from intratumoral and peritumoral areas using different expansion dimensions (3 and 5 mm) in T2-weighted imaging (T2WI) and Diffusion-Weighted Imaging (DWI). A nomogram was created by combining the optimal radiomics model with the most predictive clinical factors to enhance the LVI prediction. In the validation cohort, the radiomics models using 3 mm and 5 mm peritumoral regions in T2WI achieved AUC values of 0.786 and 0.675, respectively, surpassing the performance of models based on DWI. In both T2WI and DWI, the 3 mm peritumoral model outperformed the 5 mm model in predictive accuracy. Therefore, the combined radiomics model integrating intratumoral and the 3 mm peritumoral regions in T2WI was identified as the optimal radiomics model, achieving an AUC of 0.913. The decision and calibration curves showed that radiomics models incorporating both intratumoral and peritumoral regions outperformed traditional approaches. A nomogram was created by combining a clinical model that incorporates gender and mrN stage with the optional radiomics model, aiming to predict LVI in patients with RC. The radiomics model based on the 3 mm peritumoral region in T2WI demonstrated greater precision and sensitivity in identifying LVI. The radiomics model, which combined features from both intratumoral and peritumoral regions, exhibited superior performance compared to models based solely on either intratumoral or peritumoral attributes. The optimal combination was the integration of intratumoral features with the 3 mm peritumoral region in T2WI. A nomogram integrating radiomics features from intratumoral and peritumoral regions with clinical parameters offers valuable support for the preoperative diagnosis of LVI in RC, demonstrating significant clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助威士忌www采纳,获得10
4秒前
hello完成签到 ,获得积分10
4秒前
小二郎应助豆子采纳,获得10
5秒前
11秒前
11秒前
12秒前
Percy完成签到 ,获得积分10
14秒前
range发布了新的文献求助10
15秒前
豆子发布了新的文献求助10
16秒前
qiao应助小草采纳,获得10
17秒前
wyx完成签到 ,获得积分10
19秒前
通关完成签到 ,获得积分10
19秒前
huiluowork完成签到 ,获得积分10
20秒前
复杂白风发布了新的文献求助10
21秒前
22秒前
复杂白风完成签到,获得积分10
32秒前
852应助豆子采纳,获得10
32秒前
33秒前
33秒前
曲聋五完成签到 ,获得积分0
42秒前
47秒前
48秒前
从容荠完成签到,获得积分10
49秒前
50秒前
Akiii_完成签到,获得积分10
50秒前
Yue发布了新的文献求助10
52秒前
云影cns完成签到 ,获得积分10
53秒前
54秒前
孙廷宇完成签到,获得积分10
54秒前
小趴菜发布了新的文献求助10
55秒前
littlexu发布了新的文献求助10
58秒前
慕青应助仔wang采纳,获得10
58秒前
沉默的小耳朵完成签到 ,获得积分10
59秒前
59秒前
1分钟前
QiDW发布了新的文献求助10
1分钟前
1分钟前
qiao应助littlexu采纳,获得10
1分钟前
英姑应助littlexu采纳,获得30
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751