A Survey of the Multi-Sensor Fusion Object Detection Task in Autonomous Driving

传感器融合 任务(项目管理) 融合 计算机科学 实时计算 人工智能 工程类 嵌入式系统 计算机视觉 系统工程 语言学 哲学
作者
Hai Wang,Junhao Liu,Haoran Dong,Zheng Shao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (9): 2794-2794
标识
DOI:10.3390/s25092794
摘要

Multi-sensor fusion object detection is an advanced method that improves object recognition and tracking accuracy by integrating data from different types of sensors. As it can overcome the limitations of a single sensor in complex environments, the method has been widely applied in fields such as autonomous driving, intelligent monitoring, robot navigation, drone flight and so on. In the field of autonomous driving, multi-sensor fusion object detection has become a hot research topic. To further explore the future development trends of multi-sensor fusion object detection, we introduce the mainstream framework Transformer model of the multi-sensor fusion object detection algorithm, and we also provide a comprehensive summary of the feature fusion algorithms used in multi-sensor fusion object detection, specifically focusing on the fusion of camera and LiDAR data. This article provides an overview of feature fusion's development into feature-level fusion and proposal-level fusion, and it specifically reviews multiple related algorithms. We discuss the application of current multi-sensor object detection algorithms. In the future, with the continuous advancement of sensor technology and the development of artificial intelligence algorithms, multi-sensor fusion object detection will show great potential in more fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兰花发布了新的文献求助10
1秒前
Lucas应助顺利的若灵采纳,获得10
3秒前
樱桃儿发布了新的文献求助10
3秒前
晚生四时发布了新的文献求助10
3秒前
从容小蘑菇完成签到,获得积分10
4秒前
猪大户发布了新的文献求助10
5秒前
6秒前
7秒前
11秒前
艺歌完成签到,获得积分10
11秒前
凯凯完成签到,获得积分10
11秒前
shinn发布了新的文献求助10
11秒前
丘比特应助小兰花采纳,获得10
13秒前
13秒前
糖糖给糖糖的求助进行了留言
14秒前
14秒前
an完成签到,获得积分10
15秒前
bibi完成签到,获得积分10
15秒前
SYLH应助顺利的若灵采纳,获得10
17秒前
18秒前
qzh发布了新的文献求助10
18秒前
晴空发布了新的文献求助10
19秒前
19秒前
19秒前
bkagyin应助来因采纳,获得10
20秒前
SYLH应助123采纳,获得10
20秒前
凯凯发布了新的文献求助10
23秒前
23秒前
机灵雅寒发布了新的文献求助10
23秒前
28秒前
晴空完成签到,获得积分20
28秒前
qzh完成签到,获得积分20
31秒前
31秒前
31秒前
32秒前
小螃蟹完成签到 ,获得积分20
32秒前
smart完成签到,获得积分10
33秒前
陈住气发布了新的文献求助10
35秒前
ning完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939767
求助须知:如何正确求助?哪些是违规求助? 3485867
关于积分的说明 11035191
捐赠科研通 3215777
什么是DOI,文献DOI怎么找? 1777431
邀请新用户注册赠送积分活动 863522
科研通“疑难数据库(出版商)”最低求助积分说明 798930