Multi-modal data cross-domain fusion network for gearbox fault diagnosis under variable operating conditions

计算机科学 情态动词 变量(数学) 领域(数学分析) 断层(地质) 融合 数据挖掘 实时计算 地质学 数学分析 语言学 化学 哲学 数学 地震学 高分子化学
作者
Yongchao Zhang,Jinliang Ding,Yongbo Li,Zhaohui Ren,Ke Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108236-108236 被引量:41
标识
DOI:10.1016/j.engappai.2024.108236
摘要

Gearbox fault diagnosis is a critical aspect of machinery maintenance and reliability, as it ensures the safe and efficient operation of various industrial systems. The cross-domain fault diagnosis method based on transfer learning has been extensively researched to enhance the engineering applications of data-driven methods. Currently, the state-of-the-art gearbox cross-domain fault diagnosis primarily relies on single-modal data, which may not capture the full information needed for robust fault diagnosis under varying conditions. To address this issue, we propose a novel multi-modal data cross-domain fusion network that utilizes vibration signals and thermal images to capture comprehensive information about the gearbox's health conditions. First, one-dimensional and two-dimensional convolutional neural networks are constructed for feature extraction and fusion of multi-modal data. Then, the Maximum Mean Discrepancy loss is introduced to achieve cross-domain feature alignments within the modal. Finally, the cross-modal consistency learning strategy is constructed to enhance the cross-domain diagnosis performance of the model. To validate the effectiveness of the proposed method, we conducted experiments on a real-world gearbox test rig. Experimental results demonstrate that the proposed method is superior to single-modal methods and existing fusion methods in terms of diagnosis performance, proving that the proposed method offers a promising solution for gearbox fault diagnosis in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助程破茧采纳,获得10
刚刚
1秒前
2秒前
2秒前
lascqy完成签到 ,获得积分10
3秒前
暴躁的阁发布了新的文献求助10
4秒前
Hazel发布了新的文献求助10
5秒前
青田101完成签到,获得积分10
5秒前
6秒前
XY发布了新的文献求助10
6秒前
lll完成签到,获得积分10
7秒前
积极的夜蕾完成签到,获得积分10
7秒前
洛尘发布了新的文献求助10
7秒前
7秒前
生动谷蓝完成签到,获得积分10
8秒前
周杨完成签到 ,获得积分10
8秒前
8秒前
Owen应助Khr1stINK采纳,获得10
9秒前
YangRQ发布了新的文献求助10
11秒前
暴躁的阁完成签到,获得积分10
11秒前
huco发布了新的文献求助10
12秒前
12秒前
易千妤发布了新的文献求助10
13秒前
乐乐应助非鱼采纳,获得10
13秒前
可靠冰凡完成签到,获得积分10
14秒前
MchemG应助AAA采纳,获得10
15秒前
卡卡西应助tom采纳,获得10
16秒前
XY完成签到,获得积分10
16秒前
南北发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
明理宛秋完成签到 ,获得积分10
19秒前
我是老大应助YangRQ采纳,获得10
21秒前
wjy321发布了新的文献求助10
21秒前
33应助南北采纳,获得10
21秒前
乐悠发布了新的文献求助10
23秒前
积极的尔岚完成签到 ,获得积分10
25秒前
Ronin123456发布了新的文献求助10
25秒前
坚强的雁蓉完成签到 ,获得积分10
27秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958