Multi-modal data cross-domain fusion network for gearbox fault diagnosis under variable operating conditions

计算机科学 情态动词 变量(数学) 领域(数学分析) 断层(地质) 融合 数据挖掘 实时计算 地质学 数学 语言学 数学分析 哲学 地震学 化学 高分子化学
作者
Yongchao Zhang,Jinliang Ding,Yongbo Li,Zhaohui Ren,Ke Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108236-108236 被引量:54
标识
DOI:10.1016/j.engappai.2024.108236
摘要

Gearbox fault diagnosis is a critical aspect of machinery maintenance and reliability, as it ensures the safe and efficient operation of various industrial systems. The cross-domain fault diagnosis method based on transfer learning has been extensively researched to enhance the engineering applications of data-driven methods. Currently, the state-of-the-art gearbox cross-domain fault diagnosis primarily relies on single-modal data, which may not capture the full information needed for robust fault diagnosis under varying conditions. To address this issue, we propose a novel multi-modal data cross-domain fusion network that utilizes vibration signals and thermal images to capture comprehensive information about the gearbox's health conditions. First, one-dimensional and two-dimensional convolutional neural networks are constructed for feature extraction and fusion of multi-modal data. Then, the Maximum Mean Discrepancy loss is introduced to achieve cross-domain feature alignments within the modal. Finally, the cross-modal consistency learning strategy is constructed to enhance the cross-domain diagnosis performance of the model. To validate the effectiveness of the proposed method, we conducted experiments on a real-world gearbox test rig. Experimental results demonstrate that the proposed method is superior to single-modal methods and existing fusion methods in terms of diagnosis performance, proving that the proposed method offers a promising solution for gearbox fault diagnosis in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Melody完成签到,获得积分10
刚刚
CipherSage应助细心亦丝采纳,获得10
1秒前
1秒前
1秒前
拾贰发布了新的文献求助10
1秒前
一一完成签到,获得积分10
2秒前
2秒前
酷波er应助phobeeee采纳,获得20
2秒前
bpg28完成签到,获得积分10
3秒前
3秒前
混子华完成签到,获得积分10
3秒前
4秒前
小蘑菇应助满眼星辰采纳,获得10
4秒前
4秒前
5秒前
6秒前
lh完成签到 ,获得积分10
6秒前
雾非雾发布了新的文献求助10
6秒前
6秒前
7秒前
小花排草应助osachon采纳,获得20
7秒前
蛇從革应助沙河口大长硬采纳,获得30
7秒前
8秒前
贤yu完成签到,获得积分10
8秒前
鳗鱼友琴发布了新的文献求助10
8秒前
FFFF发布了新的文献求助10
8秒前
ShenghuiH发布了新的文献求助10
9秒前
纪元龙发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
北风应助XX采纳,获得10
9秒前
10秒前
zyl应助唐苗苗采纳,获得10
10秒前
田様应助hahaha123213123采纳,获得10
10秒前
可乐发布了新的文献求助10
11秒前
11秒前
12秒前
湫栗完成签到,获得积分10
12秒前
ShenghuiH完成签到,获得积分10
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139544
求助须知:如何正确求助?哪些是违规求助? 3676640
关于积分的说明 11621267
捐赠科研通 3370675
什么是DOI,文献DOI怎么找? 1851527
邀请新用户注册赠送积分活动 914628
科研通“疑难数据库(出版商)”最低求助积分说明 829377