亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Validation of a Multivariable Model to Predict Suicide Attempt in a Mental Health Intake Sample

心理健康 医学 自杀预防 职业安全与健康 毒物控制 自杀未遂 伤害预防 医疗保健 精神科 医疗急救 经济增长 病理 经济
作者
Santiago Papini,Honor Hsin,Patricia Kipnis,Vincent X. Liu,Yun Lu,Kristine Girard,Stacy Sterling,Esti Iturralde
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:81 (7): 700-700 被引量:9
标识
DOI:10.1001/jamapsychiatry.2024.0189
摘要

Importance Given that suicide rates have been increasing over the past decade and the demand for mental health care is at an all-time high, targeted prevention efforts are needed to identify individuals seeking to initiate mental health outpatient services who are at high risk for suicide. Suicide prediction models have been developed using outpatient mental health encounters, but their performance among intake appointments has not been directly examined. Objective To assess the performance of a predictive model of suicide attempts among individuals seeking to initiate an episode of outpatient mental health care. Design, Setting, and Participants This prognostic study tested the performance of a previously developed machine learning model designed to predict suicide attempts within 90 days of any mental health outpatient visit. All mental health intake appointments scheduled between January 1, 2012, and April 1, 2022, at Kaiser Permanente Northern California, a large integrated health care delivery system serving over 4.5 million patients, were included. Data were extracted and analyzed from August 9, 2022, to July 31, 2023. Main Outcome and Measures Suicide attempts (including completed suicides) within 90 days of the appointment, determined by diagnostic codes and government databases. All predictors were extracted from electronic health records. Results The study included 1 623 232 scheduled appointments from 835 616 unique patients. There were 2800 scheduled appointments (0.17%) followed by a suicide attempt within 90 days. The mean (SD) age across appointments was 39.7 (15.8) years, and most appointments were for women (1 103 184 [68.0%]). The model had an area under the receiver operating characteristic curve of 0.77 (95% CI, 0.76-0.78), an area under the precision-recall curve of 0.02 (95% CI, 0.02-0.02), an expected calibration error of 0.0012 (95% CI, 0.0011-0.0013), and sensitivities of 37.2% (95% CI, 35.5%-38.9%) and 18.8% (95% CI, 17.3%-20.2%) at specificities of 95% and 99%, respectively. The 10% of appointments at the highest risk level accounted for 48.8% (95% CI, 47.0%-50.6%) of the appointments followed by a suicide attempt. Conclusions and Relevance In this prognostic study involving mental health intakes, a previously developed machine learning model of suicide attempts showed good overall classification performance. Implementation research is needed to determine appropriate thresholds and interventions for applying the model in an intake setting to target high-risk cases in a manner that is acceptable to patients and clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助icoo采纳,获得10
刚刚
ceeray23发布了新的文献求助20
1秒前
AneyWinter66应助七大洋的风采纳,获得10
2秒前
10秒前
12A发布了新的文献求助10
15秒前
Ashao完成签到 ,获得积分10
33秒前
39秒前
李健应助科研通管家采纳,获得10
47秒前
慕青应助科研通管家采纳,获得10
47秒前
1分钟前
王王碎冰冰应助一周采纳,获得10
1分钟前
leilei完成签到 ,获得积分10
1分钟前
zh完成签到,获得积分10
1分钟前
yl完成签到 ,获得积分10
1分钟前
yf完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
曦耀发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
英俊的铭应助ceeray23采纳,获得20
3分钟前
QF2026关注了科研通微信公众号
3分钟前
yuan完成签到,获得积分10
4分钟前
4分钟前
4分钟前
曦耀发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
aaa5a123完成签到 ,获得积分10
5分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
icoo发布了新的文献求助10
5分钟前
Criminology34举报火乐乐求助涉嫌违规
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628282
求助须知:如何正确求助?哪些是违规求助? 4716386
关于积分的说明 14963951
捐赠科研通 4785999
什么是DOI,文献DOI怎么找? 2555502
邀请新用户注册赠送积分活动 1516781
关于科研通互助平台的介绍 1477332