鞘脂
肌萎缩
骨骼肌
生物
肌原纤维
细胞生物学
内科学
内分泌学
医学
作者
Pirkka‐Pekka Laurila,Martin Wohlwend,Tanes Lima,Peiling Luan,Sébastien Herzig,Nadège Zanou,Bárbara Crisol,Maroun Bou Sleiman,Eleonora Porcu,Héctor Gallart‐Ayala,Michal K. Handzlik,Qi Wang,Suresh Kumar Jain,Davide D’Amico,Minna K. Salonen,Christian M. Metallo,Zoltán Kutalik,Thomas O. Eichmann,Nicolas Place,Julijana Ivanišević
出处
期刊:Nature Aging
日期:2022-12-16
卷期号:2 (12): 1159-1175
被引量:30
标识
DOI:10.1038/s43587-022-00309-6
摘要
Age-related muscle dysfunction and sarcopenia are major causes of physical incapacitation in older adults and currently lack viable treatment strategies. Here we find that sphingolipids accumulate in mouse skeletal muscle upon aging and that both genetic and pharmacological inhibition of sphingolipid synthesis prevent age-related decline in muscle mass while enhancing strength and exercise capacity. Inhibition of sphingolipid synthesis confers increased myogenic potential and promotes protein synthesis. Within the sphingolipid pathway, we show that accumulation of dihydroceramides is the culprit disturbing myofibrillar homeostasis. The relevance of sphingolipid pathways in human aging is demonstrated in two cohorts, the UK Biobank and Helsinki Birth Cohort Study in which gene expression-reducing variants of SPTLC1 and DEGS1 are associated with improved and reduced fitness of older individuals, respectively. These findings identify sphingolipid synthesis inhibition as an attractive therapeutic strategy for age-related sarcopenia and co-occurring pathologies. The authors show that sphingolipids, a class of fat molecules, accumulate in skeletal muscle during aging. They demonstrate that reducing sphingolipids improves age-related fitness in mice by enhancing the myogenic response of muscle and present genetic evidence that these findings may also translate to humans.
科研通智能强力驱动
Strongly Powered by AbleSci AI