A Lightweight YOLOv4-EDAM Model for Accurate and Real-time Detection of Foreign Objects Suspended on Power Lines

人工智能 目标检测 卷积神经网络 计算机视觉 特征提取 电力传输 计算机科学 模式识别(心理学) 工程类 电气工程
作者
Zhibin Qiu,Xuan Zhu,Caibo Liao,Wenqian Qu,Yanzhen Yu
出处
期刊:IEEE Transactions on Power Delivery [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 1329-1340 被引量:18
标识
DOI:10.1109/tpwrd.2022.3213598
摘要

Foreign objects suspended on transmission and distribution lines like nests, kites, balloons, and trash, etc. may lead discharge faults and greatly affect the safety of power grid. How to perform accurate and timely detection of these foreign objects is an urgent problem. This paper proposes a lightweight YOLOv4 model with embedded dual attention mechanism (YOLOv4-EDAM) to detect foreign objects from visible images, using MobileNetV2 embedded with the squeeze and excitation networks (SENet) to replace the CSPDarkNet53 feature extraction network, the depthwise separable convolutions (DSC) to replace the standard convolutions in SPP and PANet module, and embedding the convolutional block attention module (CBAM) into SPP and PANet module to improve the detection accuracy. Firstly, an image dataset was constructed using inspection images and public datasets, and expanded by Poisson blending and some data augmentation methods. The denoising convolutional neural network (DnCNN) was applied for image preprocessing. Next, the lightweight YOLOv4-EDAM model was trained combining Mosaic data enhancement, cosine annealing and label smoothing skills. Several detection cases were carried out and the experimental results show that the proposed model has a high accuracy with the mean average precision (mAP) of 96.71%, and a fast detection speed with the frames per second (FPS) of 45, whose overall performance is better than other object detection models. This study offers a reference for power line inspection and provides a possible way to deploy edge computing devices on unmanned aerial vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
草莓布丁应助桔梗采纳,获得10
2秒前
英姑应助xiaojinzi采纳,获得10
2秒前
科目三应助nnnd77采纳,获得30
4秒前
5秒前
戎荣发布了新的文献求助10
6秒前
炙热棉花糖完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
sufasci完成签到,获得积分10
8秒前
一亩蔬菜发布了新的文献求助10
9秒前
年轻秀完成签到,获得积分20
10秒前
quup完成签到 ,获得积分10
12秒前
金佳豪发布了新的文献求助10
12秒前
爆米花应助猫猫祟采纳,获得10
12秒前
天天快乐应助小伊001采纳,获得10
12秒前
吕景宽发布了新的文献求助10
13秒前
坦率惊蛰完成签到,获得积分10
13秒前
13秒前
fang完成签到 ,获得积分10
13秒前
墨染完成签到,获得积分10
14秒前
侯侯完成签到,获得积分10
14秒前
桐桐应助土豆采纳,获得10
14秒前
彭于晏应助独特冬天采纳,获得10
14秒前
哈密瓜完成签到,获得积分10
14秒前
14秒前
Akim应助失眠的世开采纳,获得10
15秒前
JamesPei应助年轻秀采纳,获得10
16秒前
大萝贝完成签到,获得积分10
16秒前
zhinian完成签到 ,获得积分10
17秒前
cc完成签到,获得积分10
17秒前
17秒前
Mic应助nieyaochi采纳,获得10
18秒前
江睿曦发布了新的文献求助10
19秒前
chunning发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458366
求助须知:如何正确求助?哪些是违规求助? 4564435
关于积分的说明 14295002
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2458991
邀请新用户注册赠送积分活动 1448827
关于科研通互助平台的介绍 1424446