MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:19
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx完成签到 ,获得积分10
1秒前
哇哇哇发布了新的文献求助10
6秒前
paper reader完成签到,获得积分0
8秒前
btcat完成签到,获得积分10
11秒前
千帆破浪完成签到 ,获得积分10
18秒前
甜乎贝贝完成签到 ,获得积分10
20秒前
土豆晴完成签到 ,获得积分10
22秒前
mrwang完成签到 ,获得积分10
23秒前
Tsui应助无奈的小松鼠采纳,获得10
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
25秒前
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
八分饱应助无奈的小松鼠采纳,获得10
25秒前
licheng完成签到,获得积分10
36秒前
38秒前
特别圆的正方形完成签到 ,获得积分10
41秒前
king完成签到 ,获得积分10
43秒前
玖月完成签到 ,获得积分10
45秒前
隐形的非笑完成签到 ,获得积分10
45秒前
an完成签到,获得积分10
48秒前
情怀应助超帅的龙猫采纳,获得10
50秒前
超级灰狼完成签到 ,获得积分10
52秒前
moon完成签到 ,获得积分10
56秒前
壮观的海豚完成签到 ,获得积分10
57秒前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
1分钟前
23应助无奈的小松鼠采纳,获得30
1分钟前
wyh295352318完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092137
求助须知:如何正确求助?哪些是违规求助? 3630863
关于积分的说明 11507751
捐赠科研通 3341979
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585