MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:17
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助pluto采纳,获得10
2秒前
2秒前
3秒前
zzcc完成签到,获得积分10
4秒前
凊诏发布了新的文献求助10
5秒前
王一完成签到,获得积分10
7秒前
7秒前
xiaodong完成签到,获得积分10
8秒前
10秒前
10秒前
贾舒涵发布了新的文献求助10
10秒前
风趣谷秋发布了新的文献求助10
11秒前
湘湘完成签到,获得积分10
11秒前
WHY完成签到 ,获得积分10
12秒前
12秒前
12秒前
渭南第一大帅逼完成签到,获得积分10
12秒前
子车碧琴完成签到,获得积分20
13秒前
王一发布了新的文献求助10
13秒前
JHL发布了新的文献求助10
14秒前
14秒前
斯文败类应助我爱静静采纳,获得10
14秒前
ASUNA完成签到,获得积分10
15秒前
FashionBoy应助沐月星辰采纳,获得10
15秒前
所所应助weiyilin采纳,获得10
16秒前
RAY完成签到,获得积分10
16秒前
llc完成签到 ,获得积分10
16秒前
17秒前
Susie_Xie发布了新的文献求助10
19秒前
wanci应助yanglin采纳,获得10
20秒前
Estrella发布了新的文献求助10
22秒前
无花果应助小鲨鱼采纳,获得10
22秒前
小羊关注了科研通微信公众号
22秒前
沐月星辰完成签到,获得积分10
26秒前
27秒前
27秒前
29秒前
29秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819142
求助须知:如何正确求助?哪些是违规求助? 3362242
关于积分的说明 10416115
捐赠科研通 3080466
什么是DOI,文献DOI怎么找? 1694492
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388