Vibration-based structural damage detection using 1-D convolutional neural network and transfer learning

卷积神经网络 计算机科学 桥(图论) 趋同(经济学) 学习迁移 一般化 振动 人工智能 算法 深度学习 人工神经网络 模式识别(心理学) 结构工程 数学 工程类 声学 物理 数学分析 内科学 经济 医学 经济增长
作者
Shuai Teng,Shuai Teng,Zhaocheng Yan,Cheng Li,David Bassir
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (4): 2888-2909 被引量:9
标识
DOI:10.1177/14759217221137931
摘要

This paper presents a novel vibration-based structural damage detection approach by using a one-dimensional convolutional neural network (1-D CNN) and transfer learning (TL). The CNN can effectively extract structural damage information from the vibration signals. However, the CNN training needs enough samples, while some damage samples (scenarios) obtained from real structures are limited, which will compromise the CNN ability to detect structural damage. As a solution, the numerical models have potential to provide sufficient CNN training samples; meanwhile, the state-of-the-art TL technique can significantly shorten the network training time and improve the accuracy. Therefore, this paper proposes a new method to detect the damage of a bridge model. The 1-D CNN is firstly trained with the samples of the single damage scenarios of the numerical bridge model. And then it is transferred to the complex scenarios of multi-damage (double or triple simultaneously), random size structures, and experimental model. The results demonstrate that: with the TL, the accuracy of damage detection is increased by about 47% at most, and the convergence speed is increased by at least 50%; in particular, the TL can inhibit over-fitting, and for the real bridge case, the accuracy also increased by 44.4%. It is demonstrated that: the TL can effectively improve the damage detection accuracy and convergence effect, and the application of this method to the random size structures also proves its generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奮斗发布了新的文献求助10
1秒前
likeqiao发布了新的文献求助10
1秒前
华仔应助Math4396采纳,获得10
2秒前
zdw完成签到,获得积分10
3秒前
6秒前
7秒前
7秒前
cc完成签到 ,获得积分10
7秒前
乐观碧彤完成签到,获得积分10
8秒前
8秒前
8秒前
Micalblame完成签到,获得积分10
8秒前
XCai完成签到,获得积分10
9秒前
脑洞疼应助1111222333采纳,获得10
9秒前
万能图书馆应助WEIFENG采纳,获得10
10秒前
KERWINKON完成签到,获得积分10
11秒前
外向青筠完成签到,获得积分10
12秒前
Math4396发布了新的文献求助10
12秒前
hhxx发布了新的文献求助10
12秒前
爆米花应助小猪采纳,获得10
14秒前
gg完成签到,获得积分10
14秒前
KERWINKON发布了新的文献求助10
14秒前
FightPeng发布了新的文献求助10
15秒前
zhanghaonan发布了新的文献求助10
16秒前
奇客完成签到,获得积分10
17秒前
18秒前
18秒前
小熊同学发布了新的文献求助10
18秒前
18秒前
苹果松发布了新的文献求助10
19秒前
科研通AI5应助huang采纳,获得10
19秒前
乌拉完成签到 ,获得积分10
20秒前
垃圾桶发布了新的文献求助10
20秒前
完美世界应助李佳萌采纳,获得10
22秒前
momo末流主发布了新的文献求助50
22秒前
小二郎应助光脚小妖采纳,获得10
22秒前
1111222333发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150