Artificial intelligence methods for classification and prediction of potatoes harvested from fertilized soil based on a sensor array response

肥料 农业 人类健康 肥料 农业工程 数学 统计 环境科学 农学 工程类 生物 生态学 医学 环境卫生
作者
Ali Amkor,Noureddine El Barbri
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:349: 114106-114106 被引量:20
标识
DOI:10.1016/j.sna.2022.114106
摘要

Diet is one of the biggest vital reasons affecting human life, but the market is abundant with agricultural products treated with pesticides and fertilizers, which puts human health at risk. In this paper, the objective is to discriminate and predict the nature of potatoes (treated traditionally or with chemical fertilizers), one of the most consumed vegetables. To that aim, Potato samples were prepared and their headspace was analyzed. The data was collected by a data acquisition card from a sensor array manufactured with five commercial metal oxide (MOX) gas sensors from potatoes treated with NPK fertilizers, and from those treated traditionally with manure from domestic sheep and donkeys. The responses of the sensors were used to assess the accuracy of the classification and the prediction. Firstly, the k-nearest neighbors (KNN) with cross-validation of 5 folds were used for the classification and the accuracy was 90 %. Secondly, the nonlinear autoregressive with exogenous input (NARX) network was used for the prediction, and a correlation rate of 0.99 with a negligible mean square error. From the case studied, our tool is able to identify and predict whether the nature of the potato is treated with NPK fertilizer or with manure from domestic sheep and donkeys with very good rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoe完成签到,获得积分10
刚刚
ding应助fl采纳,获得10
刚刚
1秒前
fszking完成签到,获得积分20
6秒前
称心的语梦完成签到,获得积分10
8秒前
和谐初南完成签到,获得积分10
11秒前
11秒前
xie完成签到 ,获得积分10
13秒前
13秒前
fl发布了新的文献求助10
18秒前
七安发布了新的文献求助10
19秒前
陶醉的熊完成签到,获得积分10
22秒前
星辰大海应助烤肉酱酱酱采纳,获得10
22秒前
高大亦寒发布了新的文献求助10
22秒前
HEIKU应助陶醉的熊采纳,获得10
28秒前
脑洞疼应助青栞采纳,获得10
30秒前
小二郎应助悲凉的冬天采纳,获得10
34秒前
35秒前
66m37完成签到,获得积分10
35秒前
38秒前
herococa应助vulpix采纳,获得40
39秒前
所所应助迅速的谷蓝采纳,获得10
40秒前
小77发布了新的文献求助10
41秒前
山人出窍发布了新的文献求助10
41秒前
42秒前
44秒前
45秒前
45秒前
45秒前
Candy2024完成签到 ,获得积分10
49秒前
skoch发布了新的文献求助10
50秒前
50秒前
ZZQ发布了新的文献求助20
50秒前
悲凉的冬天完成签到,获得积分10
52秒前
57秒前
58秒前
ljj发布了新的文献求助10
58秒前
舒伯特完成签到 ,获得积分10
1分钟前
cherry bomb完成签到,获得积分10
1分钟前
青栞发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211514
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667104
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103