FedPos: A Federated Transfer Learning Framework for CSI-Based Wi-Fi Indoor Positioning

计算机科学 云计算 学习迁移 编码器 卷积神经网络 重新使用 利用 人工智能 特征(语言学) 个性化 机器学习 信道状态信息 实时计算 数据挖掘 无线 工程类 万维网 哲学 操作系统 电信 语言学 废物管理 计算机安全
作者
Jun Guo,Ivan Wang‐Hei Ho,Yun Hou,Zijian Li
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 4579-4590 被引量:2
标识
DOI:10.1109/jsyst.2022.3230425
摘要

This article proposes FedPos, a federated transfer learning framework together with a novel position estimation method for Wi-Fi indoor positioning. Compared with traditional machine learning with privacy leakage problems and the cloud model trained through federated learning (FL) fails in personalization, the FedPos framework aggregates nonclassification layer parameters of models trained from different environments to build a robust and versatile encoder on the cloud server while preserving user privacy. The global cloud encoder can aggregate different classifiers and then construct personalized models for new users through fine-tuning. The proposed framework can be updated incrementally and is highly extensible. Specifically, we exploit channel state information (CSI) as the positioning feature and assess the transferability of a lightweight convolutional neural network (CNN) in unfamiliar environments. We evaluate the performance of our proposed framework and position estimation method in different indoor environments. Our experimental results indicate that the proposed framework can achieve a mean localization error of 42.18 cm in a 64-position living room. They also confirm that FedPos can achieve a 5.22% average localization performance boost and reduce the average model training time by about 34.78% when compared with normal training. By reusing part of the feature extractor layers that are trained from other environments, at least 65% of training data can be saved to achieve a localization performance that is similar to the base model. Overall, the proposed position estimation method can effectively improve localization accuracy as compared with seven other existing CSI-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
璐宝完成签到,获得积分10
3秒前
落后月亮发布了新的文献求助10
3秒前
3秒前
lulu发布了新的文献求助10
4秒前
Jasper应助梅子酒采纳,获得10
6秒前
binz完成签到,获得积分10
6秒前
nesire发布了新的文献求助10
9秒前
个性松完成签到 ,获得积分10
12秒前
19秒前
隐形曼青应助nesire采纳,获得10
20秒前
23秒前
23秒前
serenity711完成签到 ,获得积分10
23秒前
uouuo完成签到 ,获得积分10
24秒前
leungya完成签到,获得积分10
26秒前
脑洞疼应助知了采纳,获得10
27秒前
科研小白发布了新的文献求助10
28秒前
梅子酒发布了新的文献求助10
29秒前
下论文完成签到,获得积分10
32秒前
wanci应助科研通管家采纳,获得10
37秒前
所所应助科研通管家采纳,获得10
37秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
天天快乐应助科研通管家采纳,获得10
38秒前
38秒前
小二郎应助科研通管家采纳,获得10
38秒前
38秒前
Wecple完成签到 ,获得积分10
42秒前
木子完成签到 ,获得积分10
45秒前
汉堡包应助科研小白采纳,获得10
49秒前
50秒前
50秒前
cdercder应助凡凡的凡凡采纳,获得20
53秒前
pray发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872