Can Chinese cities reach their carbon peaks on time? Scenario analysis based on machine learning and LMDI decomposition

温室气体 北京 驱动因素 碳纤维 环境科学 环境经济学 气候变化 中国 自然资源经济学 环境工程 地理 计算机科学 经济 算法 复合数 生态学 考古 生物
作者
Qingqing Sun,Hong Cheng,Ruyin Long,Jianqiang Zhang,Menghua Yang,Han Huang,Wanqi Ma,Yujie Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121427-121427 被引量:4
标识
DOI:10.1016/j.apenergy.2023.121427
摘要

As cities are critical actors in mitigating climate change and achieving the “3060″ target, multi-scenario studies on urban carbon emissions can provide a scientific basis for formulating urban carbon peaking action plans. To remedy the problems of missing regional statistics, inconsistent caliber, and lack of city-scale studies in carbon emission research, this paper uses the sparrow optimization neural network algorithm to fit carbon emission data with nighttime stable light for training. Carbon emission data were obtained for 281 cities in China during 2000–2020. The rates of change of influencing factors are set based on shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for different periods and different scenarios. The carbon emission and carbon peaking evolution paths of service, industrial and comprehensive cities from 2021 to 2060 are dynamically simulated. The results show that (1) service cities are significantly higher than industrial and comprehensive cities in population, GDP, secondary industry output, and energy consumption. (2) The economic development effect, as the primary driver of carbon emission growth, increases and then decreases in all five categories of cities, with 2010 as the inflection point. Industrial structure improvement has an increasingly strong offsetting effect on carbon emissions and is one of the critical directions for future carbon emission reduction. (3) Service cities such as Beijing and Shanghai are already at the completion stage of urban transformation and are more likely to reach the carbon peak on their own than other types of cities. In the low carbon following scenario, comprehensive cities such as Kaifeng, Rizhao, and Jilin can achieve their carbon peaking targets efficiently. The findings of this paper can provide valid theoretical support for carbon peaking action programs in China and other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付志敏完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
2秒前
yang发布了新的文献求助10
3秒前
HCF发布了新的文献求助10
3秒前
科研通AI5应助失眠虔纹采纳,获得10
5秒前
无花果应助研友_LjDyNZ采纳,获得10
6秒前
allenice完成签到,获得积分10
6秒前
7秒前
Bleser完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
易欣乐慰完成签到,获得积分0
8秒前
8秒前
9秒前
多肉葡萄完成签到 ,获得积分10
10秒前
老实惊蛰完成签到 ,获得积分10
11秒前
Bleser发布了新的文献求助10
13秒前
wanci应助yang采纳,获得10
15秒前
搜集达人应助伍寒烟采纳,获得10
17秒前
19秒前
天天快乐应助Ssyong采纳,获得10
19秒前
无故事完成签到 ,获得积分10
19秒前
养生坤坤完成签到 ,获得积分10
19秒前
21秒前
22秒前
英俊白玉发布了新的文献求助10
22秒前
Erich完成签到 ,获得积分10
25秒前
26秒前
26秒前
27秒前
Ava应助清新的音响采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
李健应助Megyer采纳,获得10
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098