Can Chinese cities reach their carbon peaks on time? Scenario analysis based on machine learning and LMDI decomposition

温室气体 北京 驱动因素 碳纤维 环境科学 环境经济学 气候变化 中国 自然资源经济学 环境工程 地理 计算机科学 经济 算法 复合数 生态学 考古 生物
作者
Qingqing Sun,Hong Cheng,Ruyin Long,Jianqiang Zhang,Menghua Yang,Han Huang,Wanqi Ma,Yujie Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:347: 121427-121427 被引量:4
标识
DOI:10.1016/j.apenergy.2023.121427
摘要

As cities are critical actors in mitigating climate change and achieving the “3060″ target, multi-scenario studies on urban carbon emissions can provide a scientific basis for formulating urban carbon peaking action plans. To remedy the problems of missing regional statistics, inconsistent caliber, and lack of city-scale studies in carbon emission research, this paper uses the sparrow optimization neural network algorithm to fit carbon emission data with nighttime stable light for training. Carbon emission data were obtained for 281 cities in China during 2000–2020. The rates of change of influencing factors are set based on shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for different periods and different scenarios. The carbon emission and carbon peaking evolution paths of service, industrial and comprehensive cities from 2021 to 2060 are dynamically simulated. The results show that (1) service cities are significantly higher than industrial and comprehensive cities in population, GDP, secondary industry output, and energy consumption. (2) The economic development effect, as the primary driver of carbon emission growth, increases and then decreases in all five categories of cities, with 2010 as the inflection point. Industrial structure improvement has an increasingly strong offsetting effect on carbon emissions and is one of the critical directions for future carbon emission reduction. (3) Service cities such as Beijing and Shanghai are already at the completion stage of urban transformation and are more likely to reach the carbon peak on their own than other types of cities. In the low carbon following scenario, comprehensive cities such as Kaifeng, Rizhao, and Jilin can achieve their carbon peaking targets efficiently. The findings of this paper can provide valid theoretical support for carbon peaking action programs in China and other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄钦清完成签到,获得积分10
刚刚
1秒前
karina_liu发布了新的文献求助10
1秒前
FashionBoy应助爱听歌土豆采纳,获得10
2秒前
xiaoyuntong完成签到,获得积分20
2秒前
3秒前
冷酷问柳完成签到,获得积分10
3秒前
4秒前
归尘发布了新的文献求助10
5秒前
moon发布了新的文献求助10
5秒前
COIN_77完成签到 ,获得积分10
5秒前
赘婿应助小羊许个愿采纳,获得10
6秒前
6秒前
gyh完成签到,获得积分10
6秒前
wqwaf完成签到,获得积分10
7秒前
小飞完成签到,获得积分10
8秒前
趣多多发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
12秒前
Chao完成签到,获得积分10
12秒前
orixero应助lsm采纳,获得10
14秒前
Chao发布了新的文献求助10
15秒前
pluto应助prisoner采纳,获得10
16秒前
潇洒甜瓜发布了新的文献求助10
16秒前
16秒前
16秒前
FashionBoy应助动听的乘风采纳,获得10
17秒前
Kevin完成签到,获得积分10
17秒前
浮游应助闪闪落雁采纳,获得10
17秒前
浮游应助闪闪落雁采纳,获得10
17秒前
天真玲发布了新的文献求助10
18秒前
18秒前
Jasper应助天天向上采纳,获得10
19秒前
20秒前
20秒前
赘婿应助Wyq94采纳,获得10
20秒前
烟雾完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307496
求助须知:如何正确求助?哪些是违规求助? 4453092
关于积分的说明 13856033
捐赠科研通 4340658
什么是DOI,文献DOI怎么找? 2383409
邀请新用户注册赠送积分活动 1378169
关于科研通互助平台的介绍 1345990