Location Privacy Protection for UAVs in Package Delivery and IoT Data Collection

计算机科学 对手 差别隐私 物联网 计算机网络 数据收集 高斯分布 网络数据包 编码 数据聚合器 计算机安全 信息隐私 实时计算 数据挖掘 无线传感器网络 统计 数学 生物化学 物理 化学 量子力学 基因
作者
Saeede Enayati,Dennis Goeckel,Amir Houmansadr,Hossein Pishro-Nik
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2023.3293755
摘要

Unmanned aerial vehicles (UAVs) are well-known for violating citizens privacy either inadvertently or deliberately. However, UAVs could be victims of privacy violations themselves in the sense that an adversary observing a UAV can infer its destination. This paper proposes several privacy-preserving mechanisms (PPMs) for protecting a UAV’s location privacy. In particular, we address the privacy protection problem in two major UAV applications that require significantly different measures: (i) package delivery, and (ii) Internet of Things (IoT) data collection. In the package delivery application, we propose two different PPMs to randomize the UAV’s trajectory such that the observing adversary is confused about the UAV’s destination; we provide privacy guarantees and analyze the trade-off with energy consumption. In the IoT data collection scenario, the UAV is not necessarily required to hover exactly above the IoT device; hence, we propose a different PPM according to which the UAV chooses a random spot around the IoT device for data collection. Then, considering a minimum mean squared error (MMSE) criterion, we obtain the privacy leakage to the adversary. We also analyze the mean peak age of information (PAoI) of the network and show that the proposed method does not degrade the mean PAoI significantly. Finally, considering the limitations of the MMSE approach for some applications, we also develop a differential privacy (DP)-based counterpart for this PPM. We observe that the mean PAoI degrades significantly in Laplacian DP but is acceptable in Gaussian DP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助setsail0816采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
JrPaleo101应助科研通管家采纳,获得30
1秒前
好的番茄loconte完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
田様应助哈哈采纳,获得10
2秒前
MY完成签到,获得积分10
2秒前
樂酉完成签到,获得积分10
2秒前
领导范儿应助培a采纳,获得10
3秒前
3秒前
要减肥的雨琴关注了科研通微信公众号
3秒前
3秒前
老豆芽24完成签到,获得积分10
4秒前
4秒前
为十发布了新的文献求助10
4秒前
啦啦啦啦啦关注了科研通微信公众号
7秒前
zyf发布了新的文献求助10
7秒前
樂酉发布了新的文献求助10
8秒前
8秒前
ltc发布了新的文献求助10
9秒前
桐桐应助zxer采纳,获得10
10秒前
10秒前
11秒前
eric完成签到,获得积分20
11秒前
潘梁恺发布了新的文献求助10
13秒前
myyy完成签到 ,获得积分10
14秒前
14秒前
好大一个赣宝完成签到,获得积分10
14秒前
15秒前
zheng发布了新的文献求助10
16秒前
18秒前
大模型应助樂酉采纳,获得10
18秒前
董小李完成签到,获得积分10
19秒前
果汁儿完成签到 ,获得积分10
19秒前
哈哈发布了新的文献求助10
19秒前
木木枭发布了新的文献求助10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347937
捐赠科研通 3066112
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205