亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Advances in Fatigue Detection Algorithm Based on EEG

计算机科学 机器学习 人工智能 算法 领域(数学) 学习迁移 脑电图 心理学 数学 精神科 纯数学
作者
Fei Wang,Yinxing Wan,Man Li,Haiyun Huang,Li Li,Xueying Hou,Jiahui Pan,Zhenfu Wen,Jingcong Li
出处
期刊:Intelligent Automation and Soft Computing [Taylor & Francis]
卷期号:35 (3): 3573-3586 被引量:22
标识
DOI:10.32604/iasc.2023.029698
摘要

Fatigue is a state commonly caused by overworked, which seriously affects daily work and life. How to detect mental fatigue has always been a hot spot for researchers to explore. Electroencephalogram (EEG) is considered one of the most accurate and objective indicators. This article investigated the development of classification algorithms applied in EEG-based fatigue detection in recent years. According to the different source of the data, we can divide these classification algorithms into two categories, intra-subject (within the same subject) and cross-subject (across different subjects). In most studies, traditional machine learning algorithms with artificial feature extraction methods were commonly used for fatigue detection as intra-subject algorithms. Besides, deep learning algorithms have been applied to fatigue detection and could achieve effective result based on large-scale dataset. However, it is difficult to perform long-term calibration training on the subjects in practical applications. With the lack of large samples, transfer learning algorithms as a cross-subject algorithm could promote the practical application of fatigue detection methods. We found that the research based on deep learning and transfer learning has gradually increased in recent years. But as a field with increasing requirements, researchers still need to continue to explore efficient decoding algorithms, design effective experimental paradigms, and collect and accumulate valid standard data, to achieve fast and accurate fatigue detection methods or systems to further widely apply.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Desmend发布了新的文献求助10
14秒前
怡然咖啡豆完成签到,获得积分10
22秒前
Akim应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
26秒前
48秒前
方勇飞发布了新的文献求助10
53秒前
59秒前
打打应助归海亦云采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
归海亦云发布了新的文献求助10
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
归海亦云完成签到,获得积分10
1分钟前
1分钟前
DING发布了新的文献求助20
1分钟前
1分钟前
Desmend发布了新的文献求助10
1分钟前
Desmend完成签到,获得积分20
2分钟前
整点奶茶喝喝完成签到,获得积分10
2分钟前
慕青应助DING采纳,获得10
2分钟前
方勇飞发布了新的文献求助10
2分钟前
传奇3应助曾泰平采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
GPTea应助美好的麦片采纳,获得20
2分钟前
曾泰平发布了新的文献求助10
2分钟前
3分钟前
沉静从安发布了新的文献求助10
3分钟前
华仔应助难过的踏歌采纳,获得10
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
3分钟前
bkagyin应助沉静从安采纳,获得10
3分钟前
打打应助殷音采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4994994
求助须知:如何正确求助?哪些是违规求助? 4242304
关于积分的说明 13215918
捐赠科研通 4038092
什么是DOI,文献DOI怎么找? 2209512
邀请新用户注册赠送积分活动 1220307
关于科研通互助平台的介绍 1139071