Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source

降噪 光学 材料科学 奇异值分解 计算机科学 噪音(视频) 能量(信号处理) 帧速率 人工智能 物理 量子力学 图像(数学)
作者
Mengjie Shi,Tom Vercauteren,Wenfeng Xia
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:13 (12): 6416-6416 被引量:11
标识
DOI:10.1364/boe.471198
摘要

Photoacoustic (PA) imaging is an emerging hybrid imaging modality that combines rich optical spectroscopic contrast and high ultrasonic resolution, and thus holds tremendous promise for a wide range of pre-clinical and clinical applications. Compact and affordable light sources such as light-emitting diodes (LEDs) and laser diodes (LDs) are promising alternatives to bulky and expensive solid-state laser systems that are commonly used as PA light sources. These could accelerate the clinical translation of PA technology. However, PA signals generated with these light sources are readily degraded by noise due to the low optical fluence, leading to decreased signal-to-noise ratio (SNR) in PA images. In this work, a spatiotemporal singular value decomposition (SVD) based PA denoising method was investigated for these light sources that usually have low fluence and high repetition rates. The proposed method leverages both spatial and temporal correlations between radiofrequency (RF) data frames. Validation was performed on simulations and in vivo PA data acquired from human fingers (2D) and forearm (3D) using a LED-based system. Spatiotemporal SVD greatly enhanced the PA signals of blood vessels corrupted by noise while preserving a high temporal resolution to slow motions, improving the SNR of in vivo PA images by 90.3%, 56.0%, and 187.4% compared to single frame-based wavelet denoising, averaging across 200 frames, and single frame without denoising, respectively. With a fast processing time of SVD (∼50 µs per frame), the proposed method is well suited to PA imaging systems with low-energy excitation light sources for real-time in vivo applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕长富完成签到,获得积分10
刚刚
1秒前
韭菜盒子发布了新的文献求助10
1秒前
jzmupyj完成签到,获得积分10
2秒前
大个应助林心儿采纳,获得10
2秒前
尚影芷完成签到,获得积分10
2秒前
半树完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
纯真的伟诚完成签到 ,获得积分10
5秒前
橘子的哈哈怪完成签到,获得积分10
6秒前
xiaowang0710完成签到,获得积分10
7秒前
hhh123完成签到,获得积分10
7秒前
tengfei完成签到 ,获得积分10
8秒前
9秒前
清眸发布了新的文献求助10
10秒前
略略略完成签到 ,获得积分10
10秒前
2012csc完成签到 ,获得积分0
11秒前
失眠的向日葵完成签到 ,获得积分10
11秒前
jzmulyl完成签到,获得积分10
13秒前
miracle完成签到 ,获得积分10
13秒前
小事完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助20
17秒前
无限晓蓝完成签到 ,获得积分10
18秒前
韭菜盒子完成签到,获得积分20
18秒前
LVMIN完成签到,获得积分10
20秒前
夜信完成签到,获得积分10
21秒前
qin完成签到,获得积分10
21秒前
22秒前
幽默果汁完成签到 ,获得积分10
23秒前
铑氟钌发少年狂完成签到,获得积分10
24秒前
chen完成签到,获得积分10
25秒前
末末完成签到 ,获得积分10
25秒前
madison完成签到,获得积分10
27秒前
小白完成签到 ,获得积分10
27秒前
30秒前
Maria完成签到,获得积分10
30秒前
roking完成签到,获得积分10
32秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223279
求助须知:如何正确求助?哪些是违规求助? 3756323
关于积分的说明 11807142
捐赠科研通 3418862
什么是DOI,文献DOI怎么找? 1876405
邀请新用户注册赠送积分活动 930050
科研通“疑难数据库(出版商)”最低求助积分说明 838341