Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer

计算机科学 地点 参考地 深度学习 特征学习 交通拥挤 变压器 人工智能 数据挖掘 机器学习 实时计算 工程类 操作系统 隐藏物 电气工程 哲学 电压 语言学 运输工程
作者
Yuchen Fang,Fang Zhao,Yanjun Qin,Haiyong Luo,Chenxing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23433-23446 被引量:35
标识
DOI:10.1109/tits.2022.3197640
摘要

Forecasting traffic flow and speed in the urban is important for many applications, ranging from the intelligent navigation of map applications to congestion relief of city management systems. Therefore, mining the complex spatio-temporal correlations in the traffic data to accurately predict traffic is essential for the community. However, previous studies that combined the graph convolution network or self-attention mechanism with deep time series models (e.g., the recurrent neural network) can only capture spatial dependencies in each time slot and temporal dependencies in each sensor, ignoring the spatial and temporal correlations across different time slots and sensors. Besides, the state-of-the-art Transformer architecture used in previous methods is insensitive to local spatio-temporal contexts, which is hard to suit with traffic forecasting. To solve the above two issues, we propose a novel deep learning model for traffic forecasting, named Locality-aware spatio-temporal joint Transformer (Lastjormer), which elaborately designs a spatio-temporal joint attention in the Transformer architecture to capture all dynamic dependencies in the traffic data. Specifically, our model utilizes the dot-product self-attention on sensors across many time slots to extract correlations among them and introduces the linear and convolution self-attention mechanism to reduce the computation needs and incorporate local spatio-temporal information. Experiments on three real-world traffic datasets, England, METR-LA, and PEMS-BAY, demonstrate that our Lastjormer achieves state-of-the-art performances on a variety of challenging traffic forecasting benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅唱发布了新的文献求助10
1秒前
xin完成签到,获得积分10
2秒前
冷酷新柔完成签到,获得积分10
2秒前
vide完成签到,获得积分10
3秒前
小薛发布了新的文献求助30
3秒前
随遇而安应助112233采纳,获得10
4秒前
痴情的靖柔完成签到 ,获得积分10
5秒前
maodou发布了新的文献求助10
6秒前
fujun发布了新的文献求助10
6秒前
科研通AI5应助xin采纳,获得10
6秒前
WY完成签到 ,获得积分10
6秒前
卡冈图雅完成签到,获得积分10
7秒前
8秒前
传奇3应助fujun采纳,获得10
11秒前
12秒前
well发布了新的文献求助10
13秒前
潇潇完成签到 ,获得积分10
13秒前
14秒前
so发布了新的文献求助10
15秒前
斯文败类应助vide采纳,获得50
15秒前
17秒前
科研通AI5应助lzb采纳,获得10
18秒前
LIUHUIHUI发布了新的文献求助10
18秒前
顺利毕业耶耶耶完成签到,获得积分10
19秒前
天想月发布了新的文献求助10
19秒前
星辰大海应助流北爷采纳,获得10
20秒前
20秒前
20秒前
22秒前
22秒前
菠萝炒饭不要辣椒关注了科研通微信公众号
22秒前
23秒前
答题不卡完成签到,获得积分20
23秒前
YYY完成签到,获得积分10
24秒前
SciGPT应助哈理老萝卜采纳,获得10
26秒前
lll发布了新的文献求助10
26秒前
团子发布了新的文献求助10
26秒前
27秒前
胡茶茶完成签到 ,获得积分10
28秒前
打打应助陈静怡采纳,获得10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801768
求助须知:如何正确求助?哪些是违规求助? 3347564
关于积分的说明 10334227
捐赠科研通 3063725
什么是DOI,文献DOI怎么找? 1682035
邀请新用户注册赠送积分活动 807871
科研通“疑难数据库(出版商)”最低求助积分说明 763921