KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation

计算机科学 注释 分割 人工智能 模式识别(心理学) 膝关节软骨 深度学习 骨关节炎 关节软骨 医学 病理 替代医学
作者
Yaopeng Peng,Hao Zheng,Peixian Liang,Lichun Zhang,Fahim Zaman,Xiaodong Wu,Milan Sonka,Danny Z. Chen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102574-102574 被引量:5
标识
DOI:10.1016/j.media.2022.102574
摘要

Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage and knee osteoarthritis (OA). Deep learning (DL) methods for medical image segmentation have largely outperformed traditional methods, but they often need large amounts of annotated data for model training, which is very costly and time-consuming for medical experts, especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D MR images based on sparse annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to bridge the performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the most effective and representative slices with an unsupervised scheme; it then trains an ensemble model using the annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated by the ensemble method and improved by a bi-directional hierarchical earth mover's distance (bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the primal-dual Internal Point Method (IPM). Experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset) show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality results for small annotation ratios even as low as 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想干活应助浮萍采纳,获得20
1秒前
3秒前
浮游应助hll采纳,获得10
4秒前
4秒前
周小鱼发布了新的文献求助10
4秒前
莫里亚蒂发布了新的文献求助10
4秒前
5秒前
慕青应助LDDD采纳,获得10
6秒前
认真银耳汤完成签到,获得积分10
7秒前
7秒前
汉堡包应助qq采纳,获得10
7秒前
司空豁应助热情的夏采纳,获得10
7秒前
7秒前
8秒前
8秒前
10秒前
平安喜乐发布了新的文献求助10
10秒前
10秒前
11秒前
ABC发布了新的文献求助10
13秒前
hll完成签到,获得积分10
14秒前
Embrace发布了新的文献求助10
15秒前
ChatGPT发布了新的文献求助10
15秒前
18秒前
18秒前
Camel完成签到,获得积分10
18秒前
19秒前
高佳智发布了新的文献求助20
19秒前
21秒前
锅锅发布了新的文献求助10
23秒前
LDDD发布了新的文献求助10
23秒前
迅速文龙发布了新的文献求助10
23秒前
24秒前
香蕉觅云应助JOE采纳,获得10
26秒前
zhouyunan完成签到,获得积分10
27秒前
DrW发布了新的文献求助10
27秒前
水薄荷应助Embrace采纳,获得10
27秒前
bkagyin应助Embrace采纳,获得30
27秒前
森陌发布了新的文献求助10
28秒前
fgl完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578965
求助须知:如何正确求助?哪些是违规求助? 3997507
关于积分的说明 12375910
捐赠科研通 3671823
什么是DOI,文献DOI怎么找? 2023539
邀请新用户注册赠送积分活动 1057613
科研通“疑难数据库(出版商)”最低求助积分说明 944428