Prediction of variable-groove weld penetration using texture features of infrared thermal images and machine learning methods

焊接 材料科学 沟槽(工程) 渗透(战争) 熔池 穿透深度 人工智能 计算机科学 复合材料 光学 冶金 钨极气体保护焊 工程类 电弧焊 物理 运筹学
作者
Rongwei Yu,Shun Guo,Yong Huang,Huajun Dai,Shubiao Qiu,Yong Peng,Kehong Wang
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:23: 1039-1051 被引量:11
标识
DOI:10.1016/j.jmrt.2023.01.075
摘要

When workpieces with varying grooves are welded, changes in the groove angle of the base metal can affect the butt weld penetration, thus affecting the final weld forming quality. Therefore, it is particularly important to be able to diagnose variable-groove weld penetration in real time. In this study, a novel variable-groove weld-penetration diagnosis technique using the texture features of infrared thermal images and machine learning methods is proposed. First, an improved local binary pattern algorithm based on the window standard deviation is introduced for texture analysis of welding-temperature field images. Second, the feasibility of using the images' texture features for predicting variable-groove weld penetration is demonstrated. Finally, a predictive machine-learning-based model for predicting variable-groove weld penetration is developed, and the effects of the size and location of the monitored area on the model's performance are quantified. The experimental results suggest that the proposed predictive model is feasible and offers a new and effective method for real-time diagnosis of variable-groove weld penetration. The research results of this paper enrich the application of optical inspection in the field of welding processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助哈哈哈哈采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
22发布了新的文献求助10
4秒前
4秒前
Jared应助清秀黎昕采纳,获得10
4秒前
4秒前
三莫莫莫发布了新的文献求助10
4秒前
Hello应助若晨采纳,获得20
5秒前
哇哈哈完成签到,获得积分10
5秒前
Molly0303发布了新的文献求助10
5秒前
烟酒僧发布了新的文献求助10
6秒前
大力的蚂蚁完成签到,获得积分10
6秒前
6秒前
优美巨人发布了新的文献求助10
7秒前
yyy发布了新的文献求助20
7秒前
gudujian870928完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
FashionBoy应助轻松的琳采纳,获得10
9秒前
Lucas应助Molly0303采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
芝士发布了新的文献求助10
11秒前
11秒前
Orange应助111采纳,获得10
12秒前
啊锐完成签到,获得积分0
13秒前
蒲公英发布了新的文献求助10
13秒前
13秒前
Y_完成签到,获得积分10
13秒前
Jackson发布了新的文献求助10
13秒前
14秒前
BaoBao发布了新的文献求助10
14秒前
Zengyun发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546619
求助须知:如何正确求助?哪些是违规求助? 4632425
关于积分的说明 14626866
捐赠科研通 4574039
什么是DOI,文献DOI怎么找? 2508073
邀请新用户注册赠送积分活动 1484624
关于科研通互助平台的介绍 1455784