Surface engineering via self-assembly on PEDOT: PSS fibers: Biomimetic fluff-like morphology and sensing application

佩多:嘘 材料科学 纳米技术 纤维 制作 微流控 微观结构 复合材料 图层(电子) 医学 病理 替代医学
作者
Peng Wang,Mingxu Wang,Jiadeng Zhu,Yuhang Wang,Jiefeng Gao,Chunxia Gao,Qiang Gao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:425: 131551-131551 被引量:53
标识
DOI:10.1016/j.cej.2021.131551
摘要

Wearable sensors based on fibers or textiles are attracting widespread attention due to their potential applications in wearable health monitoring and care systems, where high sensitivity plays an essential role in the development of electroconductive fibers. Though the great progress has been made in designing novel structures and understanding sensing mechanism, how to prepare conductive fibers with high sustainability and conductivity via a facile and efficient method is still a challenge. Herein, inspired by the spider’s fluff, an ion-induced self-assembly is proposed and performed to obtain continuous and large-scale fabrication of poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) fibers with an array microstructure. The formation of copper complex with fluff-like shape occurs spontaneously on the surface of PEDOT fibers without any additional post-treatment or harsh condition, which is difficult to achieve by other approaches. Benefiting from the fluff-like array, these biomimetic PEDOT: PSS-Cu2+ fibers possess a near 5-fold increase in specific surface area compared to that of pristine PEDOT: PSS fibers, which endows it with a good pressure sensitivity with ultralow detection limit (~82 Pa) and fast response time (47 ms). We further demonstrate their potential applications for airflow detection, real-time information transmission, and gravity/pressure sensing while decorating such biomimetic fibers to braided fabrics. More importantly, this work sheds light on the formation mechanisms of microstructures on the fiber, inspiring a unique path for conventional wet-spinning technology and novel fiber-surface design in order to achieve its outstanding sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助哈哈采纳,获得10
刚刚
2秒前
dada完成签到 ,获得积分10
3秒前
魔幻的妖丽完成签到 ,获得积分10
7秒前
Jasper应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
wwww完成签到 ,获得积分10
14秒前
15秒前
1111完成签到 ,获得积分10
18秒前
Jeson完成签到,获得积分10
20秒前
25秒前
26秒前
31秒前
段段发布了新的文献求助10
31秒前
杨欢发布了新的文献求助10
35秒前
39秒前
46秒前
49秒前
cossen完成签到,获得积分10
53秒前
53秒前
Rose完成签到,获得积分10
57秒前
57秒前
王哪跑12发布了新的文献求助20
57秒前
隐形曼青应助入戏太深采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
EKo完成签到,获得积分10
1分钟前
Xuhao23完成签到,获得积分10
1分钟前
红宝石设计局完成签到,获得积分10
1分钟前
lllzzz发布了新的文献求助10
1分钟前
慕青应助甜甜纲手采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872