Automated sleep spindle detection with mixed EEG features

脑电图 计算机科学 睡眠纺锤 人工智能 模式识别(心理学) 卷积神经网络 语音识别 眼球运动 非快速眼动睡眠 心理学 神经科学
作者
Peilu Chen,Dan Chen,Lei Zhang,Yunbo Tang,Xiaoli Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:70: 103026-103026 被引量:10
标识
DOI:10.1016/j.bspc.2021.103026
摘要

Detection of sleep spindles, a special type of burst brainwaves recordable with electroencephalography (EEG), is critical in examining sleep-related brain functions from memory consolidation to cortical development. It has long been an onerous and highly professional task to visually position individual sleep spindles and label their onset & offset. Automated spindle detection (template- and classifier-based) is experiencing performance bottleneck due to uncertain variances between spindles in both duration & formation. This study then develops a generic framework based on Deep Neural Network for accurate spindle detection by mixing the deep (micro-scale) features and the entropy (macro-scale) of sleep EEG. First, an "elastic" time window applies to adapt to the significantly varied durations of spindles in EEG, after which regulated deep features of EEG epochs with variable-lengths are obtained via a compact Convolutional Neural Network (CNN) with spatial pyramid pooling. Second, these deep features are mixed with the entropy of EEG epochs to support spindle classification. Focal loss applies to ease the severe imbalance between spindles and other epochs. Finally, elastic EEG epochs are set to capture the individual spindles. Experimental results on a public sleep EEG dataset (DREAMS) with the proposed framework against the state-of-the-art counterparts indicate that (1) it outperforms the counterparts with an F1-score of 0.66(0.11) while introducing entropy information gains 0.034(0.02) in this process; (2) it incurs less errors in identifying the onset & offset of spindles. Overall, the core design of the framework paves the way for detection of complicated EEG waveforms or time series in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助如履薄冰采纳,获得30
刚刚
纯真小刺猬完成签到,获得积分10
刚刚
Foxjker完成签到 ,获得积分10
1秒前
勤劳溪灵完成签到,获得积分10
1秒前
1秒前
海小豆发布了新的文献求助10
3秒前
飞柏发布了新的文献求助10
3秒前
MaheshTiangong完成签到,获得积分10
3秒前
英姑应助榴莲奶黄包采纳,获得10
3秒前
zhangjing完成签到,获得积分10
3秒前
4秒前
希望天下0贩的0应助lishihao采纳,获得10
5秒前
6秒前
田様应助满意岩采纳,获得10
7秒前
SciGPT应助顺顺安采纳,获得10
8秒前
8秒前
8秒前
叶叶叶完成签到,获得积分10
9秒前
9秒前
飞柏完成签到,获得积分10
10秒前
NexusExplorer应助1111采纳,获得10
10秒前
YY发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
李健的小迷弟应助高贵姝采纳,获得10
13秒前
戈惜完成签到 ,获得积分10
14秒前
天天快乐应助勤恳的雨文采纳,获得10
14秒前
14秒前
15秒前
16秒前
lishihao发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
FashionBoy应助一口蒜苗采纳,获得15
21秒前
海小豆完成签到,获得积分10
23秒前
小曹硕士完成签到,获得积分20
24秒前
Joker完成签到,获得积分10
24秒前
asenda完成签到,获得积分0
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243