分割
计算机科学
人工智能
追踪
模式识别(心理学)
图像分割
解码方法
计算机视觉
特征(语言学)
算法
语言学
操作系统
哲学
作者
Bo Yang,Min Liu,Yaonan Wang,Kang Zhang,Erik Meijering
标识
DOI:10.1109/tmi.2021.3125777
摘要
Digital reconstruction of neuronal morphologies in 3D microscopy images is critical in the field of neuroscience. However, most existing automatic tracing algorithms cannot obtain accurate neuron reconstruction when processing 3D neuron images contaminated by strong background noises or containing weak filament signals. In this paper, we present a 3D neuron segmentation network named Structure-Guided Segmentation Network (SGSNet) to enhance weak neuronal structures and remove background noises. The network contains a shared encoding path but utilizes two decoding paths called Main Segmentation Branch (MSB) and Structure-Detection Branch (SDB), respectively. MSB is trained on binary labels to acquire the 3D neuron image segmentation maps. However, the segmentation results in challenging datasets often contain structural errors, such as discontinued segments of the weak-signal neuronal structures and missing filaments due to low signal-to-noise ratio (SNR). Therefore, SDB is presented to detect the neuronal structures by regressing neuron distance transform maps. Furthermore, a Structure Attention Module (SAM) is designed to integrate the multi-scale feature maps of the two decoding paths, and provide contextual guidance of structural features from SDB to MSB to improve the final segmentation performance. In the experiments, we evaluate our model in two challenging 3D neuron image datasets, the BigNeuron dataset and the Extended Whole Mouse Brain Sub-image (EWMBS) dataset. When using different tracing methods on the segmented images produced by our method rather than other state-of-the-art segmentation methods, the distance scores gain 42.48% and 35.83% improvement in the BigNeuron dataset and 37.75% and 23.13% in the EWMBS dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI