Structure-Guided Segmentation for 3D Neuron Reconstruction

分割 计算机科学 人工智能 追踪 模式识别(心理学) 图像分割 解码方法 计算机视觉 特征(语言学) 算法 语言学 操作系统 哲学
作者
Bo Yang,Min Liu,Yaonan Wang,Kang Zhang,Erik Meijering
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 903-914 被引量:28
标识
DOI:10.1109/tmi.2021.3125777
摘要

Digital reconstruction of neuronal morphologies in 3D microscopy images is critical in the field of neuroscience. However, most existing automatic tracing algorithms cannot obtain accurate neuron reconstruction when processing 3D neuron images contaminated by strong background noises or containing weak filament signals. In this paper, we present a 3D neuron segmentation network named Structure-Guided Segmentation Network (SGSNet) to enhance weak neuronal structures and remove background noises. The network contains a shared encoding path but utilizes two decoding paths called Main Segmentation Branch (MSB) and Structure-Detection Branch (SDB), respectively. MSB is trained on binary labels to acquire the 3D neuron image segmentation maps. However, the segmentation results in challenging datasets often contain structural errors, such as discontinued segments of the weak-signal neuronal structures and missing filaments due to low signal-to-noise ratio (SNR). Therefore, SDB is presented to detect the neuronal structures by regressing neuron distance transform maps. Furthermore, a Structure Attention Module (SAM) is designed to integrate the multi-scale feature maps of the two decoding paths, and provide contextual guidance of structural features from SDB to MSB to improve the final segmentation performance. In the experiments, we evaluate our model in two challenging 3D neuron image datasets, the BigNeuron dataset and the Extended Whole Mouse Brain Sub-image (EWMBS) dataset. When using different tracing methods on the segmented images produced by our method rather than other state-of-the-art segmentation methods, the distance scores gain 42.48% and 35.83% improvement in the BigNeuron dataset and 37.75% and 23.13% in the EWMBS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsa2815完成签到,获得积分10
刚刚
2秒前
2秒前
华仔应助乙醇采纳,获得10
2秒前
Lh发布了新的文献求助50
3秒前
博修发布了新的文献求助10
3秒前
3秒前
烦恼的寂寞完成签到,获得积分10
4秒前
dsa2815发布了新的文献求助30
4秒前
whywhy发布了新的文献求助10
6秒前
am完成签到,获得积分10
7秒前
wang发布了新的文献求助10
7秒前
WJane发布了新的文献求助20
11秒前
11秒前
11秒前
VV发布了新的文献求助30
11秒前
QC完成签到,获得积分10
12秒前
星辰大海应助博修采纳,获得10
13秒前
老实的百招完成签到,获得积分10
14秒前
14秒前
Jc发布了新的文献求助20
15秒前
15秒前
酷酷友容应助隐形背包采纳,获得10
16秒前
乙醇发布了新的文献求助10
16秒前
dingdong258完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
隐形曼青应助柴胡采纳,获得30
19秒前
孙燕应助dsa2815采纳,获得50
20秒前
lbc发布了新的文献求助10
21秒前
Zehn发布了新的文献求助10
21秒前
22秒前
22秒前
开心寄松发布了新的文献求助10
24秒前
乙醇完成签到,获得积分10
24秒前
25秒前
芝士发布了新的文献求助10
25秒前
隐形曼青应助牧紊采纳,获得10
26秒前
wqmdd给wqmdd的求助进行了留言
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114261
求助须知:如何正确求助?哪些是违规求助? 3652682
关于积分的说明 11566689
捐赠科研通 3356759
什么是DOI,文献DOI怎么找? 1843795
邀请新用户注册赠送积分活动 909730
科研通“疑难数据库(出版商)”最低求助积分说明 826492