Prediction of response after cardiac resynchronization therapy with machine learning.

医学 心脏再同步化治疗 内科学 心脏病学 心力衰竭 QRS波群 射血分数 左束支阻滞
作者
Yixiu Liang,Ruifeng Ding,Jingfeng Wang,Xue Gong,Ziqing Yu,Lei Pan,Jingjuan Huang,Ruo-Gu Li,Yangang Su,Sibo Zhu,Junbo Ge
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:344: 120-126 被引量:2
标识
DOI:10.1016/j.ijcard.2021.09.049
摘要

Abstract Aims Nearly one third of patients receiving cardiac resynchronization therapy (CRT) suffer non-response. We intend to develop predictive models using machine learning (ML) approaches and easily attainable features before CRT implantation. Methods and results The baseline characteristics of 752 CRT recipients from two hospitals were retrospectively collected. Nine ML predictive models were established, including logistic regression (LR), elastic network (EN), lasso regression (Lasso), ridge regression (Ridge), neural network (NN), support vector machine (SVM), random forest (RF), XGBoost and k-nearest neighbour (k−NN). Sensitivity, specificity, precision, accuracy, F1, log-loss, area under the receiver operating characteristic (AU-ROC), and average precision (AP) of each model were evaluated. AU-ROC was compared between models and the latest guidelines. Six models had an AU-ROC value above 0.75. The LR, EN and Ridge models showed the highest overall predictive power compared with other models with AU-ROC at 0.77. The XGBoost model reached the highest sensitivity at 0.72, while the highest specificity was achieved by Ridge model at 0.92. All ML models achieved higher AU-ROCs that those derived from the latest guidelines (all P  http://www.crt-response.com/ . Conclusions ML algorithms produced efficient predictive models for evaluation of CRT response with features before implantation. Tools developed accordingly could improve the selection of CRT candidates and reduce the incidence of non-response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得20
2秒前
小飞飞应助科研通管家采纳,获得30
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
chen7完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助友好醉波采纳,获得10
2秒前
Owen应助赖不了采纳,获得10
3秒前
老温完成签到,获得积分10
3秒前
仁爱钢笔完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
科研通AI5应助太阳花采纳,获得10
7秒前
健忘的初翠完成签到,获得积分20
7秒前
7秒前
8秒前
VitoLi发布了新的文献求助10
8秒前
9秒前
鲨鱼宝子完成签到,获得积分10
9秒前
10秒前
Hello应助无奈元容采纳,获得30
10秒前
12秒前
解圣洁完成签到 ,获得积分10
13秒前
鲨鱼宝子发布了新的文献求助30
13秒前
友好醉波发布了新的文献求助10
13秒前
LUK_发布了新的文献求助10
14秒前
Yan完成签到,获得积分10
15秒前
15秒前
15秒前
cq2004se7en发布了新的文献求助10
15秒前
田様应助妮妮采纳,获得10
15秒前
17秒前
HEAUBOOK应助缓慢新梅采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298