清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interactive Reinforcement Learning for Feature Selection with Decision Tree in the Loop

计算机科学 强化学习 决策树 人工智能 特征学习 特征选择 机器学习 特征(语言学) 特征向量 语言学 哲学
作者
Wei Fan,Kunpeng Liu,Hao Liu,Yong Ge,Hui Xiong,Yanjie Fu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:28
标识
DOI:10.1109/tkde.2021.3102120
摘要

We study the problem of balancing effectiveness and efficiency in automated feature selection. Feature selection is to find an optimal feature subset from large feature space. After exploring many feature selection methods, we observe a computational dilemma: 1) traditional feature selection (e.g., mRMR) is mostly efficient, but difficult to identify the best subset; 2) the emerging reinforced feature selection automatically navigates feature space to search the best subset, but is usually inefficient. Are automation and efficiency always apart from each other? Can we bridge the gap between effectiveness and efficiency under automation? Motivated by this dilemma, we aim to develop a novel feature space navigation method. In our preliminary work, we leveraged interactive reinforcement learning to accelerate feature selection by external trainer-agent interaction. Our preliminary work can be significantly improved by modeling the structured knowledge of its downstream task (e.g., decision tree) as learning feedback. In this journal version, we propose a novel interactive and closed-loop architecture to simultaneously model interactive reinforcement learning (IRL) and decision tree feedback (DTF). Specifically, IRL is to create an interactive feature selection loop and DTF is to feed structured feature knowledge back to the loop. The DTF improves IRL from two aspects. First, the tree-structured feature hierarchy generated by decision tree is leveraged to improve state representation. In particular, we represent the selected feature subset as an undirected graph of feature-feature correlations and a directed tree of decision features. We propose a new embedding method capable of empowering Graph Convolutional Network (GCN) to jointly learn state representation from both the graph and the tree. Second, the tree-structured feature hierarchy is exploited to develop a new reward scheme. In particular, we personalize reward assignment of agents based on decision tree feature importance. In addition, observing agents' actions can also be a feedback, we devise another new reward scheme, to weigh and assign reward based on the selected frequency ratio of each agent in historical action records. Finally, we present extensive experiments with real-world datasets to demonstrate the improved performances of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助闪闪灵雁采纳,获得30
6秒前
new1完成签到,获得积分10
12秒前
16秒前
wakawaka完成签到 ,获得积分10
18秒前
大汤圆圆完成签到 ,获得积分10
21秒前
乐观海云完成签到 ,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
44秒前
一一完成签到 ,获得积分10
1分钟前
cao完成签到,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分0
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
火星的雪完成签到 ,获得积分0
1分钟前
whoKnows应助cao采纳,获得20
1分钟前
飞云完成签到 ,获得积分10
1分钟前
coding完成签到,获得积分10
1分钟前
微卫星不稳定完成签到 ,获得积分0
1分钟前
2分钟前
2分钟前
2分钟前
辉辉完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
lql完成签到 ,获得积分10
2分钟前
宝宝巴士驾驶员完成签到,获得积分10
2分钟前
2分钟前
闪闪灵雁发布了新的文献求助30
3分钟前
雪落你看不见完成签到,获得积分10
3分钟前
飞龙在天完成签到 ,获得积分10
3分钟前
3分钟前
霸气师完成签到 ,获得积分10
3分钟前
我是老大应助Aaron采纳,获得10
3分钟前
紫熊完成签到,获得积分10
3分钟前
Aaron完成签到,获得积分10
3分钟前
3分钟前
Aaron发布了新的文献求助10
3分钟前
AA完成签到 ,获得积分10
3分钟前
闪闪灵雁完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561657
求助须知:如何正确求助?哪些是违规求助? 4646743
关于积分的说明 14678936
捐赠科研通 4588110
什么是DOI,文献DOI怎么找? 2517307
邀请新用户注册赠送积分活动 1490617
关于科研通互助平台的介绍 1461693