Object Detector based on Enhanced Multi-scale Feature Fusion Pyramid Network

棱锥(几何) 特征(语言学) 探测器 模式识别(心理学) 卷积神经网络 计算机视觉 行人检测 深度学习 缩放空间
作者
Luan Zhao,Xiaofeng Zhang
出处
期刊:IEEE Advanced Information Technology, Electronic and Automation Control Conference 卷期号:5: 289-293 被引量:1
标识
DOI:10.1109/iaeac50856.2021.9390737
摘要

Constructing the pyramidal architecture for the feature is currently a very effective way to obtain feature information of objects at different scales. Although the feature pyramid can realize the recognition and detection of multi-scale objects in the object detection task well, it still has some limitations. Since the feature information of different levels is often not from the same layer of the network, it is difficult to obtain the feature of different objects information at a certain scale from a certain level feature map of the pyramid network. To solve this problem, we present a novel object detection architecture, named Enhanced Multi-scale Feature Fusion Pyramid Network (EMFFPNet). Our network consists of Enhanced Multi-scale Feature Fusion Module (EMFFM) and Predictor Optimization Module (POM). In EMFFM, Features at different levels can be fused into the Enhanced features as outputs, which are more representative and deterministic. In order to enable the enhanced features to play their respective roles in the pyramid network, we assign different weights to fusion features of different levels in POM. We perform the experiments on the COCO detection benchmark. The experimental results indicate that the performance of our model is much better than the state-of-the-art model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yumi发布了新的文献求助10
1秒前
shuangcheng发布了新的文献求助10
1秒前
乐乐应助调皮的凝旋采纳,获得10
1秒前
跳跃雨泽完成签到,获得积分10
1秒前
2秒前
英姑应助整齐楼房采纳,获得10
2秒前
子车茗应助小王要努力采纳,获得30
2秒前
高家琚完成签到,获得积分10
2秒前
开心青旋完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
cmdan完成签到,获得积分10
4秒前
4秒前
微光熠发布了新的文献求助10
5秒前
5秒前
爆米花应助sci_zt采纳,获得10
5秒前
小云发布了新的文献求助10
6秒前
wh发布了新的文献求助10
6秒前
6秒前
6秒前
酷波er应助单元波澜不惊采纳,获得10
6秒前
7秒前
LL发布了新的文献求助20
7秒前
可爱柠檬完成签到,获得积分10
7秒前
斯文败类应助果仁采纳,获得15
7秒前
大芳儿发布了新的文献求助10
7秒前
7秒前
threewater完成签到,获得积分10
8秒前
我是老大应助十里八乡采纳,获得10
8秒前
NexusExplorer应助周周采纳,获得10
8秒前
mia发布了新的文献求助10
8秒前
9秒前
淡定绮玉完成签到,获得积分10
9秒前
hu发布了新的文献求助10
9秒前
Akim应助huifang采纳,获得10
9秒前
10秒前
xiaozhang发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707