生命体征
可解释性
病危
医学
接收机工作特性
警报
预警得分
梯度升压
重症监护
重症监护医学
急诊医学
机器学习
人工智能
计算机科学
内科学
外科
材料科学
随机森林
复合材料
作者
Yijing Li,Wenyu Ye,Kang Yang,Shengyu Zhang,Xianliang He,Xingliang Jin,Cheng Wang,Sun Zehui,Mengxing Liu
标识
DOI:10.1016/j.cmpb.2021.106568
摘要
Cardiac arrest (CA) is the most serious death-related event in critically ill patients and the early detection of CA is beneficial to reduce mortality according to clinical research. This study aims to develop and verify a real-time, interpretable machine learning model, namely cardiac arrest prediction index (CAPI), to predict CA of critically ill patients based on bedside vital signs monitoring.A total of 1,860 patients were analyzed retrospectively from the Medical Information Mart for Intensive Care III (MIMIC-III) database. Based on vital signs, we extracted a total of 43 features for building machine learning model. Extreme Gradient Boosting (XGBoost) was used to develop a real-time prediction model. Three-fold cross validation determined the consistency of model accuracy. SHAP value was used to capture the overall and real-time interpretability of the model.On the test set, CAPI predicted 95% of CA events, 80% of which were identified more than 25 min in advance, resulting in an area under the receiver operating characteristic curve (AUROC) of 0.94. The sensitivity, specificity, area under the precision-recall curve (AUPRC) and F1-score were 0.86, 0.85, 0.12 and 0.05, respectively.CAPI can help predict patients with CA in the vital signs monitoring at bedside. Compared with previous studies, CAPI can give more timely notifications to doctors for CA events. However, current performance was at the cost of alarm fatigue. Future research is still needed to achieve better clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI