Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring

生命体征 可解释性 病危 医学 接收机工作特性 警报 预警得分 梯度升压 重症监护 重症监护医学 急诊医学 机器学习 人工智能 计算机科学 内科学 外科 材料科学 随机森林 复合材料
作者
Yijing Li,Wenyu Ye,Kang Yang,Shengyu Zhang,Xianliang He,Xingliang Jin,Cheng Wang,Sun Zehui,Mengxing Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:214: 106568-106568 被引量:23
标识
DOI:10.1016/j.cmpb.2021.106568
摘要

Cardiac arrest (CA) is the most serious death-related event in critically ill patients and the early detection of CA is beneficial to reduce mortality according to clinical research. This study aims to develop and verify a real-time, interpretable machine learning model, namely cardiac arrest prediction index (CAPI), to predict CA of critically ill patients based on bedside vital signs monitoring.A total of 1,860 patients were analyzed retrospectively from the Medical Information Mart for Intensive Care III (MIMIC-III) database. Based on vital signs, we extracted a total of 43 features for building machine learning model. Extreme Gradient Boosting (XGBoost) was used to develop a real-time prediction model. Three-fold cross validation determined the consistency of model accuracy. SHAP value was used to capture the overall and real-time interpretability of the model.On the test set, CAPI predicted 95% of CA events, 80% of which were identified more than 25 min in advance, resulting in an area under the receiver operating characteristic curve (AUROC) of 0.94. The sensitivity, specificity, area under the precision-recall curve (AUPRC) and F1-score were 0.86, 0.85, 0.12 and 0.05, respectively.CAPI can help predict patients with CA in the vital signs monitoring at bedside. Compared with previous studies, CAPI can give more timely notifications to doctors for CA events. However, current performance was at the cost of alarm fatigue. Future research is still needed to achieve better clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jinzhen发布了新的文献求助10
2秒前
4秒前
C57的狂想发布了新的文献求助10
5秒前
6秒前
Jimmy完成签到,获得积分10
6秒前
一口布丁发布了新的文献求助10
6秒前
dyfsj发布了新的文献求助10
7秒前
junsizzz完成签到,获得积分10
7秒前
8秒前
西屿清潺发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
chenyuyuan发布了新的文献求助10
12秒前
cuigao应助受伤毛豆采纳,获得10
14秒前
Dandelion完成签到,获得积分10
14秒前
斯文败类应助Summer采纳,获得10
15秒前
xiaomi发布了新的文献求助10
16秒前
17秒前
CodeCraft应助一口布丁采纳,获得10
18秒前
追寻飞风完成签到,获得积分10
19秒前
慈祥的忆寒完成签到,获得积分10
20秒前
CHUNNUAN发布了新的文献求助10
21秒前
稳重的短靴完成签到 ,获得积分10
22秒前
22秒前
李健应助可爱的严青采纳,获得10
24秒前
天天快乐应助ihcwo采纳,获得10
24秒前
深情安青应助幸福哈密瓜采纳,获得30
26秒前
年轻半雪发布了新的文献求助10
26秒前
华仔应助WQ采纳,获得10
27秒前
直率的芫完成签到,获得积分10
28秒前
29秒前
29秒前
29秒前
香翔想相完成签到,获得积分10
30秒前
蛰伏的小宇宙完成签到 ,获得积分20
30秒前
赘婿应助Miracle采纳,获得10
32秒前
32秒前
佰斯特威发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助80
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260156
求助须知:如何正确求助?哪些是违规求助? 3793081
关于积分的说明 11896577
捐赠科研通 3440645
什么是DOI,文献DOI怎么找? 1888258
邀请新用户注册赠送积分活动 938982
科研通“疑难数据库(出版商)”最低求助积分说明 844362