Ultrasonically Surface-Activated Nickel Foam as a Highly Efficient Monolith Electrode for the Catalytic Oxidation of Methanol to Formate

甲醇 催化作用 非阻塞I/O 纳米片 材料科学 格式化 整体 无机化学 电催化剂 电解质 化学工程 电极 电化学 化学 有机化学 纳米技术 冶金 工程类 物理化学
作者
Muhammad Abdullah,Asima Hameed,Ning Zhang,Hujjatul Islam,Mingming Ma,Bruno G. Pollet
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (26): 30603-30613 被引量:56
标识
DOI:10.1021/acsami.1c06258
摘要

Most of the current electrocatalysts for the methanol oxidation reaction are precious group metals such as Pt, Pd, and Ru. However, their use is limited due to their high cost, scarcity, and issues with carbon monoxide poisoning. We developed a simple method to prepare a nickel foam (NF)-based monolith electrode with a NiO nanosheet array structure as an efficient electrocatalyst toward the oxidation of methanol to produce formate. By a simple ultrasonic acid treatment and air oxidation at room temperature, an inert NF was converted to NiO/NF as a catalytically active electrode due to the uniform NiO nanosheet array that was rapidly formed on the surface of NiO/NF. In alkaline electrolytes containing methanol, the as-prepared NiO/NF catalysts exhibited a lower methanol oxidation reaction (MOR) potential of +1.53 V vs RHE at 100 mA cm–2 compared to that of inert NF samples. The difference in potentials between the EMOR and the EOER at that current density was found to be 280 mV, indicating that methanol oxidation occurred at lower potentials as compared to the oxygen evolution reaction (OER). We also observed that the NiO/NF could also efficiently catalyze the oxidation of CO without being poisoned by it. NiO/NF retained close to 100% of its initial activity after 20,000 s of methanol oxidation tests at high current densities above 200 mA cm–2. Because of the simple synthesis method and the enhanced catalytic performance and stability of NiO/NF, this allows methanol to be used as an OER masking agent for the energy-efficient generation of value-added products such as formic acid and hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lain完成签到,获得积分10
6秒前
xnhz发布了新的文献求助10
7秒前
辛勤的乌完成签到,获得积分10
8秒前
8秒前
李爱国应助熊二浪采纳,获得10
8秒前
cc关闭了cc文献求助
9秒前
鼓励男孩完成签到,获得积分10
10秒前
我要吃挂面完成签到,获得积分10
10秒前
星辰大海应助黑眼圈采纳,获得10
11秒前
Lion Li发布了新的文献求助10
11秒前
11秒前
15秒前
尤尔尔完成签到,获得积分10
16秒前
16秒前
17秒前
烂漫时发布了新的文献求助10
18秒前
酷波er应助现代的秋白采纳,获得10
19秒前
CZC完成签到,获得积分10
20秒前
忧郁短靴完成签到,获得积分10
21秒前
熊二浪发布了新的文献求助10
21秒前
Jelavender发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
梦及深海完成签到 ,获得积分10
24秒前
霸气莫茗完成签到 ,获得积分10
24秒前
曾炯关注了科研通微信公众号
24秒前
王⭕️完成签到,获得积分10
24秒前
熊玉然发布了新的文献求助10
26秒前
sheep发布了新的文献求助10
26秒前
Lion Li发布了新的文献求助10
27秒前
丘比特应助123采纳,获得10
28秒前
Lxxxx完成签到,获得积分10
30秒前
31秒前
Jelavender完成签到,获得积分10
31秒前
852应助yyx采纳,获得10
31秒前
ee完成签到 ,获得积分10
32秒前
万能图书馆应助胡萝卜采纳,获得20
34秒前
35秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423248
求助须知:如何正确求助?哪些是违规求助? 2111984
关于积分的说明 5348159
捐赠科研通 1839513
什么是DOI,文献DOI怎么找? 915714
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489747