Striving for inclusion: evidence from China using a latent profile approach

包裹体(矿物) 独创性 多样性(政治) 价值(数学) 心理学 中国 感知 社会心理学 劳动力 社会学 政治学 经济增长 数学 统计 经济 人类学 神经科学 法学 创造力
作者
Jiaojiao Qu,Shuming Zhao,Yixuan Zhao
出处
期刊:Chinese Management Studies [Emerald Publishing Limited]
卷期号:15 (4): 801-820 被引量:1
标识
DOI:10.1108/cms-10-2020-0465
摘要

Purpose This study aims to identify profiles of inclusion in the workplace to provide evidence-based guidance to build an inclusive organization. Design/methodology/approach Latent profile analysis (LPA), a person-centred classification analytical tool, was applied to determine the subtypes of inclusion with Mplus 7.4, using two-wave data collected from 368 employees in 8 Chinese companies. Findings Three subgroups were identified: identity inclusion group (the highest level of inclusion, 34.0%), value inclusion group (the moderate level of inclusion, 47.5%) and low inclusion group (the lowest level of inclusion, 18.5%). The findings indicate that groups with male, aged and highly educated members, as well as members from developed areas generally tend to feel more included and greater inclusion relates to more favourable outcomes and fewer detrimental consequences. Research limitations/implications As this study was conducted only in China, the results may not be generalizable to non-Chinese contexts. Practical implications The results may help organizational leaders develop a deeper understanding of the significance and the crux of inclusion. To address the duality of workforce diversity, managers can take initiatives to create an inclusive organization. To achieve inclusion, managers should pay attention to ways of improving the perceptions of inclusion among all employees. Originality/value This is among the first studies to identify the variants in inclusion in China using LPA. It reveals the subtypes and characteristics of inclusion and can serve as a starting point to explore how to realize organizational inclusion in theory and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skf发布了新的文献求助10
刚刚
刚刚
deanna完成签到,获得积分10
刚刚
vivi完成签到 ,获得积分10
1秒前
Aqua完成签到,获得积分10
1秒前
shenwei发布了新的文献求助20
1秒前
研友_8DoPDZ完成签到,获得积分0
1秒前
徐凤年完成签到,获得积分10
2秒前
明月照我程完成签到,获得积分10
2秒前
英姑应助怕黑的含桃采纳,获得10
2秒前
一一完成签到,获得积分10
2秒前
诚心淇完成签到,获得积分10
2秒前
ZZZ发布了新的文献求助10
3秒前
3秒前
科研通AI5应助鳗鱼落雁采纳,获得10
4秒前
Dionysus完成签到 ,获得积分10
4秒前
今后应助lico采纳,获得10
4秒前
4秒前
chen完成签到,获得积分10
5秒前
5秒前
英俊的铭应助陶醉的迎海采纳,获得10
6秒前
chen发布了新的文献求助10
6秒前
punker完成签到,获得积分20
6秒前
摩根发布了新的文献求助10
7秒前
糖果完成签到 ,获得积分10
8秒前
8秒前
健忘的自中给健忘的自中的求助进行了留言
8秒前
善学以致用应助Wrong采纳,获得30
8秒前
李键刚发布了新的文献求助20
9秒前
LaoLuo发布了新的文献求助10
10秒前
慕青应助cui采纳,获得10
10秒前
ZZZ完成签到,获得积分20
11秒前
skf完成签到,获得积分20
11秒前
卿18900681672完成签到,获得积分20
11秒前
hu完成签到,获得积分10
11秒前
一帆风顺发布了新的文献求助10
12秒前
12秒前
12秒前
糯米饭完成签到 ,获得积分10
12秒前
爆米花应助adam采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966