亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Discovery of Mild Cognitive Impairment Subtypes and Their Risk of Alzheimer's Disease Conversion Using Unsupervised Machine Learning and Gaussian Mixture Modeling

混合模型 潜在类模型 心理学 聚类分析 阿尔茨海默病 疾病 集合(抽象数据类型) 认知障碍 优势比 认知 人工智能 机器学习 精神科 医学 计算机科学 内科学 程序设计语言
作者
Fahimeh Nezhadmoghadam,Antonio Martinez-Torteya,Victor Trevino,Emmanuel Martinez,Alejandro Santos,Jose Tamez-Pena
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:18 (7): 595-606 被引量:2
标识
DOI:10.2174/1567205018666210831145825
摘要

Alzheimer's Disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills. The ability to correctly predict the diagnosis of Alzheimer's disease in its earliest stages can help physicians make more informed clinical decisions on therapy plans.This study aimed to determine whether the unsupervised discovering of latent classes of subjects with Mild Cognitive Impairment (MCI) may be useful in finding different prodromal AD stages and/or subjects with a low MCI to AD conversion risk.Total 18 features relevant to the MCI to AD conversion process led to the identification of 681 subjects with early MCI. Subjects were divided into training (70%) and validation (30%) sets. Subjects from the training set were analyzed using consensus clustering, and Gaussian Mixture Models (GMM) were used to describe the latent classes. The discovered GMM predicted the latent class of the validation set. Finally, descriptive statistics, rates of conversion, and Odds Ratios (OR) were computed for each discovered class.Through consensus clustering, we discovered three different clusters among MCI subjects. The three clusters were associated with low-risk (OR = 0.12, 95%CI = 0.04 to 0.3|), medium-risk (OR = 1.33, 95%CI = 0.75 to 2.37), and high-risk (OR = 3.02, 95%CI = 1.64 to 5.57) of converting from MCI to AD, with the high-risk and low-risk groups highly contrasting. Hence, prodromal AD subjects were present in only two clusters.We successfully discovered three different latent classes among MCI subjects with varied risks of MCI-to-AD conversion through consensus clustering. Two of the discovered classes may represent two different prodromal presentations of Alzheimer´s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
Steven完成签到,获得积分10
15秒前
个性归尘应助科研通管家采纳,获得30
16秒前
曾经的翠霜完成签到,获得积分10
36秒前
kikyo完成签到,获得积分10
1分钟前
1分钟前
ReyAdas发布了新的文献求助10
2分钟前
心灵美语兰完成签到 ,获得积分10
2分钟前
科研通AI2S应助22myzhang2采纳,获得10
2分钟前
大个应助乐生采纳,获得10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
2分钟前
22myzhang2发布了新的文献求助10
2分钟前
zhang完成签到 ,获得积分10
2分钟前
22myzhang2完成签到,获得积分10
2分钟前
zhen发布了新的文献求助10
2分钟前
3分钟前
幽默尔蓝发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
3分钟前
3分钟前
乐生发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
KzW完成签到 ,获得积分10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
ding应助科研通管家采纳,获得10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
个性归尘应助科研通管家采纳,获得30
4分钟前
4分钟前
优雅柏柳完成签到,获得积分20
4分钟前
Akim应助不想工作的小辉采纳,获得10
4分钟前
优雅柏柳发布了新的文献求助10
4分钟前
L_MD完成签到,获得积分10
4分钟前
乐生完成签到,获得积分10
4分钟前
StonesKing完成签到,获得积分10
4分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833755
求助须知:如何正确求助?哪些是违规求助? 3376192
关于积分的说明 10492292
捐赠科研通 3095787
什么是DOI,文献DOI怎么找? 1704713
邀请新用户注册赠送积分活动 820077
科研通“疑难数据库(出版商)”最低求助积分说明 771810