亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating disease similarity based on gene network reconstruction and representation

计算机科学 计算生物学 数据挖掘 相似性(几何) 基因 代表(政治) 生物网络
作者
Yang Li,Keqi Wang,Guohua Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (20): 3579-3587
标识
DOI:10.1093/bioinformatics/btab252
摘要

Motivation Quantifying the associations between diseases is of great significance in increasing our understanding of disease biology, improving disease diagnosis, re-positioning, and developing drugs. Therefore, in recent years, the research of disease similarity has received a lot of attention in the field of bioinformatics. Previous work has shown that the combination of the ontology (such as disease ontology and gene ontology) and disease-gene interactions are worthy to be regarded to elucidate diseases and disease associations. However, most of them are either based on the overlap between disease-related gene sets or distance within the ontology's hierarchy. The diseases in these methods are represented by discrete or sparse feature vectors, which cannot grasp the deep semantic information of diseases. Recently, deep representation learning has been widely studied and gradually applied to various fields of bioinformatics. Based on the hypothesis that disease representation depends on its related gene representations, we propose a disease representation model using two most representative gene resources HumanNet and Gene Ontology to construct a new gene network and learn gene (disease) representations. The similarity between two diseases is computed by the cosine similarity of their corresponding representations. Results We propose a novel approach to compute disease similarity, which integrates two important factors disease-related genes and gene ontology hierarchy to learn disease representation based on deep representation learning. Under the same experimental settings, the AUC value of our method is 0.8074, which improves the most competitive baseline method by 10.1%. The quantitative and qualitative experimental results show that our model can learn effective disease representations and improve the accuracy of disease similarity computation significantly. Availability The research shows that this method has certain applicability in the prediction of gene-related diseases, the migration of disease treatment methods, drug development, and so on. Supplementary information Supplementary data are available at https://github.com/catly/disease_similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookie完成签到,获得积分10
22秒前
淡淡菠萝完成签到 ,获得积分10
24秒前
不想改格式了完成签到,获得积分10
27秒前
37秒前
cc发布了新的文献求助10
44秒前
zhengxu完成签到,获得积分20
46秒前
Dasein完成签到 ,获得积分10
48秒前
科研通AI5应助cookie采纳,获得10
49秒前
49秒前
布丁完成签到 ,获得积分10
53秒前
lisaltp发布了新的文献求助10
54秒前
1分钟前
Ava应助二三采纳,获得10
1分钟前
在水一方应助cc采纳,获得10
1分钟前
1分钟前
dahai发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
shimhjy应助科研通管家采纳,获得20
1分钟前
1分钟前
敏宝小仙女的狗完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
二三发布了新的文献求助10
1分钟前
cc发布了新的文献求助10
1分钟前
lisaltp完成签到,获得积分10
1分钟前
redamancy完成签到 ,获得积分10
1分钟前
1分钟前
不能随便完成签到,获得积分10
1分钟前
平凡之路发布了新的文献求助10
1分钟前
科研通AI5应助平凡之路采纳,获得10
1分钟前
2分钟前
konosuba完成签到,获得积分0
2分钟前
LL来了完成签到 ,获得积分10
2分钟前
毓雅完成签到,获得积分10
2分钟前
2分钟前
欢喜海完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359930
捐赠科研通 3068677
什么是DOI,文献DOI怎么找? 1685216
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022