Tumor vasculature-targeting nanomedicines

血管生成 医学 癌症研究 纳米医学 药理学 纳米技术 纳米颗粒 材料科学
作者
Ying Zhang,Jingni He
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:134: 1-12 被引量:18
标识
DOI:10.1016/j.actbio.2021.07.015
摘要

Uncontrolled tumor growth and subsequent distant metastasis are highly dependent on an adequate nutrient supply from tumor blood vessels, which have relatively different pathophysiological characteristics from those of normal vasculature. Obviously, strategies targeting tumor vasculature, such as anti-angiogenic drugs and vascular disrupting agents, are attractive methods for cancer therapy. However, the off-target effects and high dose administration of these drug regimens critically restrict their clinical applications. In recent years, nanomedicines focused on tumor vasculature have been shown to be superior to traditional therapeutic methods and do not induce side effects. This review will first highlight the recent development of tumor vasculature-targeting nanomedicines from the following four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature-regulating nanomedicines (VRNs). Furthermore, the design principles, limitations, and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Based on the essential roles of tumor blood vessels, the therapeutic strategies targeting tumor vasculature have exhibited good clinical therapeutic outcomes. However, poor patient adherence to free drug administration limits their clinical usage. Nanomedicines have great potential to overcome the abovementioned obstacle. This review summarizes the tumor-vasculature targeting nanomedicines from four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature regulating nanomedicines (VRNs). In addition, this review provides perspectives on this research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gggyyy完成签到,获得积分10
刚刚
1秒前
Owen应助墩墩采纳,获得10
2秒前
gggyyy发布了新的文献求助10
2秒前
3秒前
6秒前
我不爱池鱼应助cg采纳,获得10
7秒前
7秒前
凡帝发布了新的文献求助10
7秒前
吃菠萝的桃子完成签到 ,获得积分10
8秒前
centlay应助GUKGO采纳,获得10
9秒前
10秒前
10秒前
华华发布了新的文献求助10
12秒前
不知道发布了新的文献求助10
12秒前
陈淑玲发布了新的文献求助10
14秒前
15秒前
ysh完成签到 ,获得积分10
16秒前
18秒前
18秒前
kay发布了新的文献求助10
19秒前
CipherSage应助DPY采纳,获得10
20秒前
20秒前
ssk完成签到,获得积分10
20秒前
centlay应助sc采纳,获得10
21秒前
充电宝应助一鸣采纳,获得10
22秒前
梦惊蝉发布了新的文献求助10
24秒前
zsj完成签到,获得积分20
24秒前
某某发布了新的文献求助10
25秒前
LIM关闭了LIM文献求助
26秒前
26秒前
27秒前
27秒前
28秒前
28秒前
DPY完成签到,获得积分10
30秒前
陈哥发布了新的文献求助10
31秒前
xiewuhua完成签到,获得积分10
32秒前
酸化土壤改良应助琳琅采纳,获得10
32秒前
32秒前
高分求助中
The Illustrated History of Gymnastics 800
The Bourse of Babylon : market quotations in the astronomical diaries of Babylonia 680
Herman Melville: A Biography (Volume 1, 1819-1851) 600
Division and square root. Digit-recurrence algorithms and implementations 500
機能營養學前瞻(3 Ed.) 300
Improving the ductility and toughness of Fe-Cr-B cast irons 300
Problems of transcultural communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2507981
求助须知:如何正确求助?哪些是违规求助? 2159050
关于积分的说明 5527178
捐赠科研通 1879417
什么是DOI,文献DOI怎么找? 935009
版权声明 564089
科研通“疑难数据库(出版商)”最低求助积分说明 499318