Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning

模式识别(心理学) 机器学习 目标检测 视频跟踪 卷积神经网络
作者
Jinpeng Wang,Yuting Gao,Ke Li,Yiqi Lin,Andy J. Ma,Hao Cheng,Pai Peng,Feiyue Huang,Rongrong Ji,Xing Sun
出处
期刊:Computer Vision and Pattern Recognition 卷期号:: 11804-11813 被引量:14
标识
DOI:10.1109/cvpr46437.2021.01163
摘要

Self-supervised learning has shown great potentials in improving the video representation ability of deep neural networks by getting supervision from the data itself. However, some of the current methods tend to cheat from the background, i.e., the prediction is highly dependent on the video background instead of the motion, making the model vulnerable to background changes. To mitigate the model reliance towards the background, we propose to remove the background impact by adding the background. That is, given a video, we randomly select a static frame and add it to every other frames to construct a distracting video sample. Then we force the model to pull the feature of the distracting video and the feature of the original video closer, so that the model is explicitly restricted to resist the background influence, focusing more on the motion changes. We term our method as Background Erasing (BE). It is worth noting that the implementation of our method is so simple and neat and can be added to most of the SOTA methods without much efforts. Specifically, BE brings 16.4% and 19.1% improvements with MoCo on the severely biased datasets UCF101 and HMDB51, and 14.5% improvement on the less biased dataset Diving48.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渤大小mn发布了新的文献求助10
刚刚
爱听歌的钢铁侠完成签到,获得积分10
1秒前
大鱼发布了新的文献求助10
1秒前
zfy发布了新的文献求助10
1秒前
2秒前
老九发布了新的文献求助10
2秒前
充电宝应助浑绿海采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
FashionBoy应助公卫小张采纳,获得10
5秒前
xiaoyh96完成签到,获得积分10
5秒前
能干海完成签到,获得积分10
5秒前
儒雅的语梦完成签到 ,获得积分10
5秒前
SciGPT应助狗宅采纳,获得10
6秒前
吃不饱发布了新的文献求助10
8秒前
promise发布了新的文献求助10
8秒前
局内人发布了新的文献求助10
9秒前
9秒前
丘比特应助xiaoyh96采纳,获得10
9秒前
x_zhiqi发布了新的文献求助10
9秒前
10秒前
睡着了发布了新的文献求助10
11秒前
11秒前
慕青应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得30
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
Owen应助翟三日采纳,获得30
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917