已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data

高光谱成像 多光谱图像 青枯病 植被(病理学) 天蓬 遥感 反射率 青枯菌 园艺 生物 医学 植物 地理 病菌 物理 病理 光学 免疫学
作者
Tingting Chen,Weiguang Yang,Huajian Zhang,Bingyu Zhu,Ruier Zeng,Xinyue Wang,Shuaibin Wang,Leidi Wang,Haixia Qi,Yubin Lan,Lei Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:177: 105708-105708 被引量:50
标识
DOI:10.1016/j.compag.2020.105708
摘要

Bacterial wilt (BW) caused by Ralstonia solanacearum is the most serious peanut diseases in South China. Its timely and accurate detection is important to opportunely implement disease management practices. This study aimed to establish and select the most appropriate leaf-level reflectance-based vegetation indices for BW detection and to determine whether these new indices can be used in UAV multispectral imaging for peanut BW detection. ANOVA, multilayer perception, and the reduced sampling method were used to analyze the spectral data. The most effective detection wavelengths, 730 nm and 790 nm, were used for developing new peanut BW detection indices. The 15 hyperspectral indices with highest correlation coefficients (R > 0.80) were obtained based on 46 hyperspectral indices and the BW severity results from Experiment 1. By testing the above vegetation indices at the leaf level and in UAV images using different methods and the results from Experiment 2, it was found that four of the developed indices (BWI1, BWI3, BWI4, and BWI6) performed appropriately (P < 0.01, M > 1.0), as they could distinguish between healthy and BW infected peanut plants, even if the plant presented minimal external symptoms. Our findings confirmed the potential of hyperspectral remote sensing including leaf-level and UAV images for peanut BW detection at early disease stages and discrimination of different BW severity levels based on vegetation indices derived from leaf-level reflectance. Timely BW severity determination based on our results could provide farmers with useful information to control peanut BW disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snail完成签到,获得积分10
刚刚
3秒前
15秒前
谨慎的友安完成签到 ,获得积分10
15秒前
zhul09完成签到,获得积分10
16秒前
louming完成签到,获得积分10
16秒前
16秒前
Wang_miao完成签到 ,获得积分10
16秒前
酷波er应助心灵美的斓采纳,获得10
16秒前
聪明映菡完成签到,获得积分10
18秒前
脑壳疼完成签到,获得积分10
18秒前
学术菜鸡123完成签到,获得积分10
19秒前
19秒前
踏浪浪完成签到,获得积分10
21秒前
聪明映菡发布了新的文献求助10
21秒前
22秒前
777完成签到,获得积分10
22秒前
marco完成签到 ,获得积分10
23秒前
louming发布了新的文献求助10
25秒前
1073980795发布了新的文献求助10
26秒前
29秒前
zbx完成签到,获得积分10
30秒前
32秒前
33秒前
griffon完成签到,获得积分10
34秒前
sxmt123456789完成签到,获得积分20
34秒前
COSMAO应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得10
35秒前
35秒前
星辰大海应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
生物小白完成签到,获得积分10
38秒前
39秒前
42秒前
一切顺利完成签到,获得积分10
44秒前
44秒前
46秒前
46秒前
48秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4135858
求助须知:如何正确求助?哪些是违规求助? 3672599
关于积分的说明 11611180
捐赠科研通 3368095
什么是DOI,文献DOI怎么找? 1850327
邀请新用户注册赠送积分活动 913753
科研通“疑难数据库(出版商)”最低求助积分说明 828910