Bayesian Network revealing evidence-based strategies to enhance the performance of building envelope openings subject to wind-driven rain

龙卷风 屋顶 建筑围护结构 防水 工程类 风暴 环境科学 气象学 建筑工程 土木工程 结构工程 地理 热的
作者
Juliana Faria Correa Thompson Flores,Edoardo Bertone,Oz Sahin,Rodney A. Stewart
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:33: 101565-101565 被引量:5
标识
DOI:10.1016/j.jobe.2020.101565
摘要

Abstract Severe storms and tropical cyclones bring destructive winds and heavy rain. While building structural performance has significantly improved in the last few decades due to higher regulatory requirements, some non-structural elements, such as windows, external doors, roof coverings and attachments such as guttering, fascia and eaves, remain subject to minor failure, causing loss of amenity and damage to structural building components over time. Enhancing the performance of buildings has become imperative to mitigating the impacts of tropical cyclones and storm events. Damage investigations conducted after tropical cyclones and severe storms have consistently revealed that windows and external glazed doors are affected by wind-driven rain, causing leakage into the cavity and interior of the building. This research study focuses on repeated water ingress through windows and external glazed doors. Wind-driven rain can penetrate undamaged windows and external doors, gaps around the window seals or doors, and waterproofing elements, thereby allowing water to enter buildings. A qualitative expert interview research approach was applied to identify several factors affecting the performance of openings (windows and external glazed doors). Subsequently, a Bayesian Network model was developed according to the determined parameters and expert workshops. The Bayesian Network scenario analysis enabled the researchers to identify the best combination of management interventions to enhance the performance of openings to water ingress from tropical cyclones and severe storms. The study findings provide evidence-based support for industry and government authorities to develop effective strategies for enhancing the performance of openings subject to wind-driven rain from tropical cyclones and severe storms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanglejia完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
谭玲慧发布了新的文献求助10
4秒前
4秒前
科研通AI5应助机智幻香采纳,获得10
5秒前
科研通AI6应助chentian采纳,获得10
6秒前
星辰大海应助Hollow采纳,获得10
6秒前
weddcf发布了新的文献求助10
6秒前
在水一方应助平常听枫采纳,获得10
7秒前
7秒前
7秒前
柯善鹏发布了新的文献求助10
7秒前
Ava应助优秀采纳,获得10
8秒前
英勇的书包完成签到 ,获得积分20
8秒前
11秒前
谁会发布了新的文献求助10
11秒前
12秒前
Criminology34应助wuludie采纳,获得10
12秒前
13秒前
情怀应助科研通管家采纳,获得10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
成懂事长发布了新的文献求助10
14秒前
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
oMayii完成签到 ,获得积分10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
15秒前
无花果应助科研通管家采纳,获得10
15秒前
LaTeXer应助科研通管家采纳,获得200
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934322
求助须知:如何正确求助?哪些是违规求助? 4202226
关于积分的说明 13056506
捐赠科研通 3976520
什么是DOI,文献DOI怎么找? 2179026
邀请新用户注册赠送积分活动 1195304
关于科研通互助平台的介绍 1106681