Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels

海水淡化 脂质双层 水通道蛋白 材料科学 纳米技术 生物膜 背景(考古学) 生物物理学 化学 生物 生物化学 古生物学
作者
Cassandra J. Porter,Jay R. Werber,Mingjiang Zhong,Corey J. Wilson,Menachem Elimelech
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (9): 10894-10916 被引量:119
标识
DOI:10.1021/acsnano.0c05753
摘要

Transmembrane protein channels, including ion channels and aquaporins that are responsible for fast and selective transport of water, have inspired membrane scientists to exploit and mimic their performance in membrane technologies. These biomimetic membranes comprise discrete nanochannels aligned within amphiphilic matrices on a robust support. While biological components have been used directly, extensive work has also been conducted to produce stable synthetic mimics of protein channels and lipid bilayers. However, the experimental performance of biomimetic membranes remains far below that of biological membranes. In this review, we critically assess the status and potential of biomimetic desalination membranes. We first review channel chemistries and their transport behavior, identifying key characteristics to optimize water permeability and salt rejection. We compare various channel types within an industrial context, considering transport performance, processability, and stability. Through a re-examination of previous vesicular stopped-flow studies, we demonstrate that incorrect permeability equations result in an overestimation of the water permeability of nanochannels. We find in particular that the most optimized aquaporin-bearing bilayer had a pure water permeability of 2.1 L m-2 h-1 bar-1, which is comparable to that of current state-of-the-art polymeric desalination membranes. Through a quantitative assessment of biomimetic membrane formats, we analytically show that formats incorporating intact vesicles offer minimal benefit, whereas planar biomimetic selective layers could allow for dramatically improved salt rejections. We then show that the persistence of nanoscale defects explains observed subpar performance. We conclude with a discussion on optimal strategies for minimizing these defects, which could enable breakthrough performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlxlxl完成签到,获得积分20
刚刚
深情安青应助cyw采纳,获得10
1秒前
怡然的涔完成签到,获得积分10
1秒前
Shan5给Shan5的求助进行了留言
4秒前
bkagyin应助白白采纳,获得30
4秒前
Twonej应助突突突然悟了采纳,获得30
6秒前
迷你的怀绿完成签到,获得积分10
7秒前
小巧又菱完成签到,获得积分10
7秒前
无花果应助疯狂的寻绿采纳,获得10
7秒前
zxdw发布了新的文献求助30
8秒前
安卡完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
哈哈哈完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
sevenhill应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得20
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
sevenhill应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
箴逸发布了新的文献求助20
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
诚心谷南完成签到,获得积分10
15秒前
李爱国应助牛牛不怕困难采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646438
求助须知:如何正确求助?哪些是违规求助? 4771331
关于积分的说明 15034955
捐赠科研通 4805240
什么是DOI,文献DOI怎么找? 2569540
邀请新用户注册赠送积分活动 1526547
关于科研通互助平台的介绍 1485858