已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach

计算机科学 加密 认证(法律) 计算机安全 上传 块链 差别隐私 信息隐私 数据挖掘 万维网
作者
Md. Abdur Rahman,M. Shamim Hossain,Mohammad Saiful Islam,Nabil Alrajeh,Ghulam Muhammad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 205071-205087 被引量:198
标识
DOI:10.1109/access.2020.3037474
摘要

Recent advancements in the Internet of Health Things (IoHT) have ushered in the wide adoption of IoT devices in our daily health management. For IoHT data to be acceptable by stakeholders, applications that incorporate the IoHT must have a provision for data provenance, in addition to the accuracy, security, integrity, and quality of data. To protect the privacy and security of IoHT data, federated learning (FL) and differential privacy (DP) have been proposed, where private IoHT data can be trained at the owner’s premises. Recent advancements in hardware GPUs even allow the FL process within smartphone or edge devices having the IoHT attached to their edge nodes. Although some of the privacy concerns of IoHT data are addressed by FL, fully decentralized FL is still a challenge due to the lack of training capability at all federated nodes, the scarcity of high-quality training datasets, the provenance of training data, and the authentication required for each FL node. In this paper, we present a lightweight hybrid FL framework in which blockchain smart contracts manage the edge training plan, trust management, and authentication of participating federated nodes, the distribution of global or locally trained models, the reputation of edge nodes and their uploaded datasets or models. The framework also supports the full encryption of a dataset, the model training, and the inferencing process. Each federated edge node performs additive encryption, while the blockchain uses multiplicative encryption to aggregate the updated model parameters. To support the full privacy and anonymization of the IoHT data, the framework supports lightweight DP. This framework was tested with several deep learning applications designed for clinical trials with COVID-19 patients. We present here the detailed design, implementation, and test results, which demonstrate strong potential for wider adoption of IoHT-based health management in a secure way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
zho应助科研通管家采纳,获得10
2秒前
zho应助科研通管家采纳,获得10
2秒前
Xu完成签到 ,获得积分10
3秒前
小二郎应助清图采纳,获得10
6秒前
科研通AI5应助Vintage采纳,获得10
8秒前
星辰大海应助100采纳,获得10
11秒前
小骆完成签到,获得积分10
15秒前
lixia完成签到 ,获得积分10
23秒前
32秒前
32秒前
小宋发布了新的文献求助10
33秒前
清图发布了新的文献求助10
37秒前
xiaoguo发布了新的文献求助10
45秒前
46秒前
48秒前
hackfeng完成签到,获得积分10
49秒前
50秒前
100发布了新的文献求助10
51秒前
53秒前
skhhh发布了新的文献求助10
53秒前
57秒前
59秒前
桐桐应助kosang采纳,获得10
1分钟前
1分钟前
Leoniko完成签到 ,获得积分10
1分钟前
ambition发布了新的文献求助10
1分钟前
DaLu发布了新的文献求助10
1分钟前
子阅完成签到 ,获得积分10
1分钟前
小二郎应助super采纳,获得10
1分钟前
1分钟前
结实的小土豆完成签到 ,获得积分10
1分钟前
Vintage发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723