伴侣(临床)
细胞生物学
酶
磷酸化
化学
生物化学
组氨酸
酪氨酸
腺苷酸化
尿苷
生物
核糖核酸
生物合成
医学
基因
病理
作者
Yinlong Yang,Yingying Yue,Nannan Song,Cuiling Li,Zenglin Yuan,Yan Wang,Yue Ma,Hui Li,Fengyu Zhang,Weiwei Wang,Haihong Jia,Peng Li,Xiaobing Li,Qi Wang,Zhe Ding,Hongjie Dong,Lichuan Gu,Bingqing Li
出处
期刊:Cell Reports
[Cell Press]
日期:2020-09-01
卷期号:32 (12): 108161-108161
被引量:19
标识
DOI:10.1016/j.celrep.2020.108161
摘要
Sensing stressful conditions and adjusting the cellular metabolism to adapt to the environment are essential activities for bacteria to survive in variable situations. Here, we describe a stress-related protein, YdiU, and characterize YdiU as an enzyme that catalyzes the covalent attachment of uridine-5′-monophosphate to a protein tyrosine/histidine residue, an unusual modification defined as UMPylation. Mn2+ serves as an essential co-factor for YdiU-mediated UMPylation. UTP and Mn2+ binding converts YdiU to an aggregate-prone state facilitating the recruitment of chaperones. The UMPylation of chaperones prevents them from binding co-factors or clients, thereby impairing their function. Consistent with the recent finding that YdiU acts as an AMPylator, we further demonstrate that the self-AMPylation of YdiU padlocks its chaperone-UMPylation activity. A detailed mechanism is proposed based on the crystal structures of Apo-YdiU and YdiU-AMPNPP-Mn2+ and on molecular dynamics simulation models of YdiU-UTP-Mn2+ and YdiU-UTP-peptide. In vivo data demonstrate that YdiU effectively protects Salmonella from stress-induced ATP depletion through UMPylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI