Superior arsenate adsorption and comprehensive investigation of adsorption mechanism on novel Mn-doped La2O2CO3 composites

砷酸盐 吸附 解吸 水溶液 化学 无机化学 化学工程 兴奋剂 材料科学 有机化学 光电子学 工程类
作者
Jing Su,Tao Lyu,Hao Yi,Lei Bi,Gang Pan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:391: 123623-123623 被引量:47
标识
DOI:10.1016/j.cej.2019.123623
摘要

A major challenge for effective decontamination of arsenate from aqueous solution is the development of adsorbent possessing enormous high-active sites with strong affinity to realize both high adsorption capacity and reduction of arsenate down to permissive levels. Here we demonstrate that this challenge may be overcome by doping Mn atoms into La2O2CO3 materials. The synthesized material (5.26%-MnL) achieved an arsenate capture ability superior to most other currently-reported adsorbents, with the maximum adsorption capacity of 555.6 mg/g. Additionally, this novel adsorbent could dramatically reduce the concentration of arsenate from 3775 μg/L to less than 4 μg/L, well below the acceptable value for drinking water (10 μg/L). The adsorption capacity of 5.26%-MnL was demonstrated to be >300 mg/g over a wide pH range from 4 to 9 and the efficiency was maintained >85% even after three cycles of adsorption/desorption. Through a series of characterizations, both surface complexation and ion exchange were proved to contribute to arsenate removal at low molar ratios of As(V)/5.26%-MnL while forming LaAsO4 precipitation played a greater role at higher As(V)/5.26%-MnL ratios. Density Functional Theory (DFT) calculations suggested that Mn atoms acted as active species by not only increasing lattice defects and adsorption sites, but also by activating La3+ in La2O2CO3, which lowered the adsorption energy and facilitated arsenate removal. Due to the high affinity and superior adsorption capacity towards arsenate, Mn-doped La2O2CO3 has been demonstrated to be a promising prospect for the remediation of arsenate-polluted water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
oc666888发布了新的文献求助10
1秒前
Mic完成签到,获得积分10
1秒前
2秒前
pp1015完成签到 ,获得积分10
3秒前
4秒前
小年小少完成签到 ,获得积分10
4秒前
whoknowsname发布了新的文献求助10
4秒前
JamesPei应助Lee采纳,获得30
4秒前
廉6666发布了新的文献求助10
5秒前
R467完成签到,获得积分10
5秒前
暖雪儿发布了新的文献求助10
6秒前
老肥完成签到,获得积分10
6秒前
7秒前
沉淀完成签到 ,获得积分10
7秒前
8秒前
zyy发布了新的文献求助10
8秒前
科研修沟发布了新的文献求助10
8秒前
科研通AI2S应助贪玩飞珍采纳,获得10
9秒前
10秒前
11秒前
cc完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
Smoiy发布了新的文献求助10
14秒前
潘旭完成签到,获得积分10
14秒前
阔达的沛文完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
勤奋梨愁发布了新的文献求助10
16秒前
16秒前
沉默的语堂完成签到,获得积分10
17秒前
liuxinyu完成签到 ,获得积分10
17秒前
田様应助河丫采纳,获得10
17秒前
gao完成签到,获得积分10
17秒前
li发布了新的文献求助10
17秒前
shirely发布了新的文献求助10
18秒前
spirit发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297021
求助须知:如何正确求助?哪些是违规求助? 4446041
关于积分的说明 13838182
捐赠科研通 4331101
什么是DOI,文献DOI怎么找? 2377446
邀请新用户注册赠送积分活动 1372686
关于科研通互助平台的介绍 1338278